Social Networks, First Principles, and Graph Modification

Ulrik Brandes

Social Networks Lab, ETH Zürich

Workshop on Graph Modification 23-24 January 2020, Bergen

Delitsch's Volksschulklasse

Johannes Delitsch (1900) Über Schülerfreundschaften in einer Volksschulklasse Zeitschrift für Kinderforschung 5:150–163

participant observation

- ▶ 53 boys in 4th grade
- school year 1880/81
- class room, school yard
- including staged situations

sociograms

Jacob L. Moreno: Who Shall Survive? Beacon House, 1953 [1934]

"A process of charting has been devised by the sociometrists, the sociogram, which is more than merely a method of presentation. It is first of all a method of exploration."

graph theory

Harary & Norman: Graph Theory as a Mathematical Model in the Social Sciences Ann Arbor: Institute for Social Research, 1953

figure from:

Group structures and communication networks in terms of the mathematical theory of graphs (Harary & Norman, 1952)

complex networks

Watts & Strogatz (1998). Collective dynamics of 'small world' networks, *Nature* 393:440–442 Christakis & Fowler (2007). The spread of obesity in a large social network over 32 years, *New England Journal of Medicine* 357:370–379

denotes a familial tie.

network science

B., Robins, McCranie & Wasserman (2013). What is Network Science? Network Science 1(1):1-15

emerging mathematical discipline (a particular kind of data science)

- mathematical network science
- computational network science
- applied network science

David A. Whetten (1989). What constitutes a theoretical contribution? *Academy of Management Review* 14(4):490–495

antecedents conditions

what?

consequences outcomes

what?

David A. Whetten (1989). What constitutes a theoretical contribution? *Academy of Management Review* 14(4):490–495

David A. Whetten (1989). What constitutes a theoretical contribution? *Academy of Management Review* 14(4):490–495

David A. Whetten (1989). What constitutes a theoretical contribution? *Academy of Management Review* 14(4):490–495

research design

networks as explanatory / mediating / dependent variables

research design

networks as explanatory / mediating / dependent variables

longitudinal studies:

research design

networks as explanatory / mediating / dependent variables

longitudinal studies: e.g., co-evolution of structure and behavior

social network analysis old school

centra	lity		roles			cohesion
$c_D(i)$	=	$\deg(i)$	i ~ j	\implies	N(i) = N(j)	dense subgraphs
$c_{C}(i)$	=	$\left(\sum dist(i, t)\right)^{-1}$	$i \approx j$	\implies	$[N(i)]_\approx = [N(j)]_\approx$	iterated cuts
		$\left(\sum_{t} (z, t i)\right)$	$i \equiv j$	\iff	$i = \alpha(j)$	spectral partitioning $\left[\sum_{i=1}^{n} \left(\sum_{j=1}^{n} \left(\sum_{i=1}^{n} \left(\sum_{j=1}^{n} \left(\sum_{j=1}^{$
$c_B(i)$	=	$\sum_{s,t} \frac{\sigma(s,t I)}{\sigma(s,t)}$		÷		$Q(C) = \sum_{n=1}^{\infty} \left \frac{m(C)}{m} - \left(\frac{\sum_{i \in C} \deg(i)}{2m} \right)^{n} \right $
$c_E(i)$	=	$\frac{1}{\lambda_1}\sum_{i\in N(i)}c_E(j)$				· · · · · · · · · · · · · · · · · · ·
	÷					

analytic categories

choose or refine method from a list of options

analytic pipeline

agenda: break down choices

- small-scale hypothesis testing
- research program

B. (2016). Network positions. *Methodological Innovations* 9:2059799116630650

isolates

isolates vs. cliques

Luce & Perry (1949). A method of matrix analysis of group structure. *Psychometrika* 14:95–116

isolates vs. cliques

Luce & Perry (1949). A method of matrix analysis of group structure. *Psychometrika* 14:95–116 density: (normalized) distance

$$m = |E|$$
 edges = edits

$$\frac{2m}{n} = \langle \deg \rangle \qquad \text{average degree}$$

$$\frac{m}{\binom{n}{2}} = \frac{\langle \deg \rangle}{n-1} \qquad \text{bot}$$

oth normalized

ETH zürich

ideal core-periphery structure

split graph: ex. $V = C \uplus P$ s.t.

- ► *G*[*C*] clique
- ► *G*[*P*] isolates

ideal core-periphery structure

degree sequence $d_1 \ge \ldots \ge d_n$ corrected Durfee number $h(G) = \max\{i : d_i \ge i - 1\}$

$$\sum_{i=1}^{h} d_i = h(h-1) + \sum_{j=h+1}^{n} d_j$$

split graph: ex. $V = C \uplus P$ s.t.

- ► *G*[*C*] clique
- ► *G*[*P*] isolates

ideal core-periphery structure

degree sequence $d_1 \ge \ldots \ge d_n$ corrected Durfee number $h(G) = \max\{i : d_i \ge i - 1\}$

$$\sum_{i=1}^{h} d_i = h(h-1) + \sum_{j=h+1}^{n} d_j$$

splittance: split edit distance (Hammer & Simeone, 1981)

$$\frac{1}{2}\left(h(h-1) + \sum_{j=h+1}^{n} d_{j} - \sum_{i=1}^{h} d_{i}\right)$$

split graph: ex. $V = C \uplus P$ s.t.

- ► *G*[*C*] clique
- ► *G*[*P*] isolates

ideal core-periphery structure

degree sequence $d_1 \ge \ldots \ge d_n$ corrected Durfee number $h(G) = \max\{i : d_i \ge i - 1\}$

$$\sum_{i=1}^{h} d_i = h(h-1) + \sum_{j=h+1}^{n} d_j$$

splittance: split edit distance (Hammer & Simeone, 1981)

$$\frac{1}{2}\left(h(h-1) + \sum_{j=h+1}^{n} d_{j} - \sum_{i=1}^{h} d_{i}\right)$$

split graph: ex. $V = C \uplus P$ s.t.

- ► *G*[*C*] clique
- ► *G*[*P*] isolates

NP-hard for multiple cores/peripheries, other densitiesBruckner, Hüffner & Komusiewicz (2015)B., Holm & Karrenbauer (2016)

the world trade network has a core-periphery structure

international trade

- ▶ in the year 2000
- only if \geq 10 billion US\$
- 17 countries in core
- 16 edges missing in core
- ► 56 countries in periphery
- 23 edges appear in periphery
- ▶ 9% editing needed

ideal centrality ranking

ideal centrality ranking

A person located in the center of a star is universally assumed to be structurally more central than any other person in any other position in any other network of similar size.

Freeman (Social Networks 1979)

ideal centrality ranking

axiomatic: Sabidussi (Psychometrika 1966)

- invariance under graph isomorphisms
- edge addition and switching increase centrality

Boldi & Vigna (Internet Mathematics 2014)

A person located in the center of a star is universally assumed to be structurally more central than any other person in any other position in any other network of similar size. conceptual:

- flow processes Borgatti (Social Networks 2005)
- radial and medial positions
 Borgatti & Everett (Social Networks 2006)

Freeman (Social Networks 1979)

the essence of centrality


```
N(i) \subseteq N[j] \implies c(i) \leq c(j)
```


the essence of centrality

Schoch & B. (European Journal of Applied Mathematics 2016)

path algebra
$$au(s,t) = \bigoplus_{s \to {}^{*}t} x_{sv_1} \odot \cdots \odot x_{v_{k-1}t}$$

 \odot, \oplus *decreasing* semiring \implies neighborhood-inclusion respected

ideal ranking by centrality

Schoch, Valente & B. (Social Networks 2017)

completely ranked by neighborhood-inclusion

ideal ranking by centrality

Schoch, Valente & B. (Social Networks 2017)

completely ranked by neighborhood-inclusion

threshhold graphs

$$\sum_{i=1}^{1} d_i = 1(1-1) + \sum_{j=1+1}^{n} d_j$$

:
$$\sum_{i=1}^{h} d_i = h(h-1) + \sum_{j=h+1}^{n} d_j$$

ideal ranking by centrality

Schoch, Valente & B. (Social Networks 2017)

completely ranked by neighborhood-inclusion majorization gap, edge rotation

threshhold graphs

$$\sum_{i=1}^{n} d_i = 1(1-1) + \sum_{j=1+1}^{n} d_j$$

:
$$\sum_{i=1}^{h} d_i = h(h-1) + \sum_{j=h+1}^{n} d_j$$

threshold edit distance \mathcal{NP} -hard

Drange, Dregi, Lokshtanov & Sullivan (ESA 2015)

how far from a threshold graph?

Mahadev & Peled (1995). Threshold Graphs and Related Topics.

(corrected) conjugate sequences $\overline{d}_i = |\{d_j \ge i-1 : j = 1, \dots, i-1\}| + |\{d_j \ge i : j = i+1, \dots, n\}|$

equivalent to Erdős-Gallai inequalities:

$$\sum_{i=1}^{k} d_i \leq \sum_{i=1}^{k} \overline{d}_i \quad \text{for all } k = 1, \dots, n-1$$

	\overline{d}_1	\overline{d}_2	\overline{d}_3	\overline{d}_4	\overline{d}_5	\overline{d}_6	
d_1	×	٠	٠	٠	٠	٠	5
d_2	•	\times	٠	٠	٠		4
d_3	•	٠	\times	٠			3
d_4	•	٠	٠	×			3
d_5	•				•		1
d_6	•					•	1
d_7	•						1
	6	3	3	3	2	1	18

1

how far from a threshold graph?

Mahadev & Peled (1995). Threshold Graphs and Related Topics.

(corrected) conjugate sequences
$$\overline{d}_i = |\{d_j \ge i-1 : j = 1, \dots, i-1\}| + |\{d_j \ge i : j = i+1, \dots, n\}|$$

L

equivalent to Erdős-Gallai inequalities:

L

	\overline{d}_1						
d_1	×	٠	•	•	•	•	5
d_2	•	×	٠	٠	٠		4
d_3	•	٠	×	•			3
d_4	•	٠	٠	\times			3
d_5	•				•		1
d_6	•					•	1
d_7	•						1
	6	3	3	3	2	1	18

$$\sum_{i=1}^{n} d_{i} \leq \sum_{i=1}^{n} \overline{d}_{i} \quad \text{for all } k = 1, \dots, n - h = \max\{i : d_{i} \geq i - 1\}$$
splittance
$$\frac{1}{2} \left(\sum_{i=1}^{h} \overline{d}_{i} - \sum_{i=1}^{h} d_{i} \right)$$
threshold gap
$$\frac{1}{2} \sum_{i=1}^{h} \left| \overline{d}_{i} - d_{i} \right|$$

$$= \text{majorization gap}$$

$$\leq 2 \times \text{ edit distance}$$

1

how far from a threshold graph?

Mahadev & Peled (1995). Threshold Graphs and Related Topics.

(corrected) conjugate sequences
$$\overline{d}_i = |\{d_j \ge i-1 : j = 1, \dots, i-1\}| + |\{d_j \ge i : j = i+1, \dots, n\}|$$

L

equivalent to Erdős-Gallai inequalities:

L

	\overline{d}_1						
d_1	×	٠	•	٠	•	•	5
d_2	•	×	٠	٠	٠		4
d_3	•	٠	×	٠			3
d_4	•	٠	٠	×			3
d_5	•				•		1
d_6	•					•	1
d_7	•						1
	6	3	3	3	2	1	18

$$\sum_{i=1}^{n} d_{i} \leq \sum_{i=1}^{n} \overline{d}_{i} \quad \text{for all } k = 1, \dots, n - h = \max\{i : d_{i} \geq i - 1\}$$
splittance
$$\frac{1}{2} \left(\sum_{i=1}^{h} \overline{d}_{i} - \sum_{i=1}^{h} d_{i} \right)$$
threshold gap
$$\frac{1}{2} \sum_{i=1}^{h} \left| \overline{d}_{i} - d_{i} \right|$$

$$= \text{majorization gap}$$

$$\leq 2 \times \text{ edit distance}$$

open: edge rotation distance

distance from threshold graph

Schoch, Valente & B. (2017). Correlations among centrality indices and a class of uniquely ranked graphs. Social Networks 50:46-54

replication of empirical study

Valente et al. (Connections 2003)

core-periphery networks yield high correlation of centralities

 \implies beware of generated data!

centrality correlation

majorization gap

ideal community structures

brokered communities

Nastos & Gao (2013). Familial groups in social networks. Social Networks 35(3):439-450

threshold graphs:

- add universal vertex (top of ranking)
- or add isolated vertex (bottom of ranking)

brokered communities

Nastos & Gao (2013). Familial groups in social networks. Social Networks 35(3):439-450

edit distance NP-hard

quasi-threshold graphs:

- add universal vertex (top of hierarchies)
- or add isolated vertex (new hierarchy)
- merge two quasi-threshold graphs (separate hierarchies)

facebook communities

B., Hamann, Strasser & Wagner (Proc. ESA 2015)

facebook friendships

► CalTech in 2005

facebook communities

B., Hamann, Strasser & Wagner (Proc. ESA 2015)

facebook friendships

- ► CalTech in 2005
- skeleton of nearby quasi-threshold graph

facebook communities at CalTech in 2005 lived under one roof

B., Hamann, Strasser & Wagner (Proc. ESA 2015)

facebook friendships

- CalTech in 2005
- skeleton of nearby quasi-threshold graph
- vertices colored according to dorm

summary: ideal structures

conclusions

social networks: network science applied in social domain

observations on intersecting dyads dependencies yield structure delineated by substance, not methods

first principles: ideal structure as reference point

graph modification to assess deviations new models for measurement error?

generalizations: positional approach suggests new problems

graph modification effects on indirect relations (distance, connectivity, etc.) effects of homogeneity assumptions on graph modifications (extrinsic, automorphic. etc.) graph modification and non-binary dyad variables (multiplex, signed, valued, temporal, etc.)

:

•