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A relaxation of F-FREE EDGE DELETION

Input: A graph G and a nonnegative integer k.

Question: Does G have a spanning subgraph H that contains no induced
subgraph isomorphic to F' and such that |Eg| > k7

e For every S C Vy: H[S| # F

L > ><|
P . ™ . for every S C Vg:
|H[S]=F = G[S] £ F |

e Relaxation:

L > L ]
G, FF=C,y C4-FREE DELETION(G)
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H satisfies the I-closure if for every S C Vi with H[S] = F, we have G[S] # F.

o » 3 [ 3
E(G) - E(H)
weak —

strong —
[ » [ 3 E(H) ¢ 3
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Strong Triadic Closure

Label the edges strong and weak
such that a c

if zy and yz are strong,
then zz € Vg

e STRONG TRIADIC CLOSURE (STC) = Strong Ps3-closure

e STC is NP-complete in general graphs [Sintos et al., 2014]
e remains NP-complete on split graphs and graphs with A(G) <4

e STC is polynomial solvable in proper interval graphs, cographs, and graphs of
bounded treewidth
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We study STRONG F-CLOSURE from a parameterized complexity point of view.
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Parameter: |Eg|+ |Vr| (strong edges + size of F')

We now show that if |[Er| > 2 then STRONG F-CLOSURE is FPT.

Case 1. F has a connected component with at least 3 vertices.
Case 2. F = pK; + qK», with p >0 and ¢ > 2.
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We now show that if |[Er| > 2 then STRONG F-CLOSURE is FPT.

If F has a connected component with at least 3 vertices, STRONG F-CLOSURE has a
kernel.

Rule 1. If there is a set of |Vr| 4+ k + 1 false twins in G, then remove one of them.

Find maximal matching M.
Note that Ey = M satisfies STRONG F-CLOSURE. If |M| > k then this is a solution.

Y
Otherwise, ,*\\\ /,A\\ /,R‘
X =V with | X] <2k —2 ! \(X\ R
Y = Vi \ X is an independent set L ot A
At most 21X vertices of Y with distinct neighborhoods. X

Every false twin class has size at most |V | + k.
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Lemma

STRONG (pK1 + ¢K2)-CLOSURE with p > 0 and g > 2 can be solved in FPT time.
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Theorem

If F' # pK;y with p > 1 and F # pK; + K3 with p > 0, then STRONG F-CLOSURE is
FPT parameterized by |Eu|+ |Vr|.

Also, if |Er| > k then (G, k) is a yes-instance of STRONG F-CLOSURE.
If |Er| < k and F has no isolated vertices, |Vr| < k.

Corollary
If F has no isolated vertices, STRONG F-CLOSURE is FPT parameterized by |Ex]|,
even when F' is given as part of the input.
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F = P3, G is split no polynomial kernel
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If H is a matching, then H satisfies the F-Closure.




Our work

Parameter Restriction Parameterized Complexity
|[Ep| <1 co-W(1]-hard
Epr|>2 FPT

Bl + |Vl Pr| 2 :
F has a component with > 3 .

polynomial kernel

vertices, G is d-degenerate

|Ex| F has no isolated vertices FPT
F = P3, G is split no polynomial kernel




Our work

Parameter Restriction Parameterized Complexity
|[Ep| <1 co-W(1]-hard
Epr|>2 FPT

Bl + |Vl Pr| 2
F has a component with > 3 .

polynomial kernel

vertices, G is d-degenerate

|Ex| F has no isolated vertices FPT
F = Ps, G is split no polynomial kernel
F=P;, A(G) <4 FPT

|| = v(G) wolis
F=Ki4t>3 FPT




BN
Our work
Parameter: |Eg| — |Er| (weak edges)

Graph Modifi

ation Wor

DA



Our work

Parameter: |Eg| — |Er| (weak edges)

BN
For every fixed graph F, STRONG F-CLOSURE can be solved in time 29 .
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Parameter: |Eg| — |Er| (weak edges)

For every fixed graph F', STRONG F-CLOSURE can be solved in time 200 . pO)
where £ = |Eg| — |EH|.

1. List all induced subgraphs of G isomorphic to F.
e [ fixed — poly-time.
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Parameter: |Eg| — |En| (weak edges)

For every fixed graph F', STRONG F-CLOSURE can be solved in time 200 . pO)
where £ = |Eg| — |EH|.

1. List all induced subgraphs of G isomorphic to F'.
e [ fixed — poly-time.

2. For each induced subgraph F’ ~ F we check whether G[Vp] has a weak edge.

e If it does not, then we must make at least one of the edges of G[Vg/] weak.
e Branch.
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