Parameterized aspects of strong subgraph closure

Petr Golovach ${ }^{1}$ Pinar Heggernes ${ }^{1} \quad$ Paloma T. Lima ${ }^{1}$ Athanasios Konstantinidis ${ }^{2} \quad$ Charis Papadopoulos ${ }^{2}$

${ }^{1}$ University of Bergen, Norway
${ }^{2}$ University of Ioannina, Greece

23.01.2020

A relaxation of F-Free Edge Deletion

F-Free Edge Dbletion

Input: A graph G and a nonnegative integer k.
Question: Does G have a spanning subgraph H that contains no induced subgraph isomorphic to F and such that $\left|E_{H}\right| \geq k$?

A relaxation of F-Free Edge Deletion

F-Free Edge Deletion

Input: A graph G and a nonnegative integer k.
Question: Does G have a spanning subgraph H that contains no induced subgraph isomorphic to F and such that $\left|E_{H}\right| \geq k$?

- For every $S \subseteq V_{H}: H[S] \neq F$

A relaxation of F-Free Edge Deletion

F-Free Edge Deletion

Input: A graph G and a nonnegative integer k.
Question: Does G have a spanning subgraph H that contains no induced subgraph isomorphic to F and such that $\left|E_{H}\right| \geq k$?

- For every $S \subseteq V_{H}: H[S] \neq F$

A relaxation of F-Free Edge Deletion

F-Free Edge Deletion

Input: A graph G and a nonnegative integer k.
Question: Does G have a spanning subgraph H that contains no induced subgraph isomorphic to F and such that $\left|E_{H}\right| \geq k$?

- For every $S \subseteq V_{H}: H[S] \neq F$

A relaxation of F-Free Edge Deletion

F-Free Edge Deletion

Input: A graph G and a nonnegative integer k.
Question: Does G have a spanning subgraph H that contains no induced subgraph isomorphic to F and such that $\left|E_{H}\right| \geq k$?

- For every $S \subseteq V_{H}: H[S] \neq F$

A relaxation of F-Free Edge Deletion

F-Free Edge Deletion

Input: A graph G and a nonnegative integer k.
Question: Does G have a spanning subgraph H that contains no induced subgraph isomorphic to F and such that $\left|E_{H}\right| \geq k$?

- For every $S \subseteq V_{H}: H[S] \neq F$

- Relaxation:
for every $S \subseteq V_{H}$:

$$
H[S]=F \Rightarrow G[S] \neq F
$$

C_{4}-Free Deletion (G)

A relaxation of F-Free Edge Deletion
H satisfies the F-closure if for every $S \subseteq V_{H}$ with $H[S]=F$, we have $G[S] \neq F$.

A relaxation of F-Free Edge Deletion

H satisfies the F-closure if for every $S \subseteq V_{H}$ with $H[S]=F$, we have $G[S] \neq F$.

$G, F=C_{4}$

Strong C_{4}-Closure (G)

A relaxation of F-Free Edge Deletion

H satisfies the F-closure if for every $S \subseteq V_{H}$ with $H[S]=F$, we have $G[S] \neq F$.

$G, F=C_{4}$

Strong C_{4}-Closure (G)

A relaxation of F-Free Edge Deletion

H satisfies the F-closure if for every $S \subseteq V_{H}$ with $H[S]=F$, we have $G[S] \neq F$.

A solution of F-Free Deletion is a solution for Strong F-Closure. The converse is not always true.

A relaxation of F-Free Edge Deletion

H satisfies the F-closure if for every $S \subseteq V_{H}$ with $H[S]=F$, we have $G[S] \neq F$.

Strong C_{4}-Closure (G)

A solution of F-Free Deletion is a solution for Strong F-Closure. The converse is not always true.

STRONG F-CLOSURE

Input: A graph G and a nonnegative integer k
Question: Does G have a spanning subgraph H that satisfies the F-closure and such that $\left|E_{H}\right| \geq k$?

A relaxation of F-Free Edge Deletion

H satisfies the F-closure if for every $S \subseteq V_{H}$ with $H[S]=F$, we have $G[S] \neq F$.

A solution of F-Free Deletion is a solution for Strong F-Closure. The converse is not always true.

STRONG F-CLOSURE

Input: A graph G and a nonnegative integer k
Question: Does G have a spanning subgraph H that satisfies the F-closure and such that $\left|E_{H}\right| \geq k$?

Strong Triadic Closure

Label the edges strong and weak such that
if $x y$ and $y z$ are strong, then $x z \in V_{G}$

Strong Triadic Closure

Label the edges strong and weak such that
if $x y$ and $y z$ are strong, then $x z \in V_{G}$

Strong Triadic Closure

Label the edges strong and weak such that
if $x y$ and $y z$ are strong, then $x z \in V_{G}$

Strong Triadic Closure

Label the edges strong and weak such that
if $x y$ and $y z$ are strong, then $x z \in V_{G}$

Strong Triadic Closure

Label the edges strong and weak such that
if $x y$ and $y z$ are strong, then $x z \in V_{G}$

Strong Triadic Closure

Label the edges strong and weak such that
if $x y$ and $y z$ are strong, then $x z \in V_{G}$

- Strong Triadic Closure (STC) $=$ Strong P_{3}-closure

Strong Triadic Closure

Label the edges strong and weak such that
if $x y$ and $y z$ are strong, then $x z \in V_{G}$

- Strong Triadic Closure (STC) $=$ Strong P_{3}-closure
- STC is NP-complete in general graphs [Sintos et al., 2014]

Strong Triadic Closure

Label the edges strong and weak such that
if $x y$ and $y z$ are strong, then $x z \in V_{G}$

- Strong Triadic Closure (STC) $=$ Strong P_{3}-closure
- STC is NP-complete in general graphs [Sintos et al., 2014]
- remains NP-complete on split graphs and graphs with $\Delta(G) \leq 4$

Strong Triadic Closure

Label the edges strong and weak such that
if $x y$ and $y z$ are strong, then $x z \in V_{G}$

- Strong Triadic Closure (STC) $=$ Strong P_{3}-closure
- STC is NP-complete in general graphs [Sintos et al., 2014]
- remains NP-complete on split graphs and graphs with $\Delta(G) \leq 4$
- STC is polynomial solvable in proper interval graphs, cographs, and graphs of bounded treewidth

Our work

Our work

We study Strong F-Closure from a parameterized complexity point of view.

Our work

Parameter: $\left|E_{H}\right|+\left|V_{F}\right|$ (strong edges + size of F)

Our work

Parameter: $\left|E_{H}\right|+\left|V_{F}\right|$ (strong edges + size of F)
Observation: G has a spanning subgraph H satisfying the $p K_{1}$-closure iif G is $p K_{1}$-free.
It is known that Independent Set is W [1]-hard parameterized by solution size.

Our work

Parameter: $\left|E_{H}\right|+\left|V_{F}\right|$ (strong edges + size of F)

Observation: G has a spanning subgraph H satisfying the $p K_{1}$-closure iif G is $p K_{1}$-free.
It is known that Independent Set is W [1]-hard parameterized by solution size.

Proposition

Strong $p K_{1}$-CLOSURE can be solved in time $n^{O(p)}$, and it is co- W [1]-hard for $k \geq 0$ when parameterized by p.

Our work

Parameter: $\left|E_{H}\right|+\left|V_{F}\right|$ (strong edges + size of F)
Observation: G has a spanning subgraph H satisfying the $p K_{1}$-closure iif G is $p K_{1}$-free.
It is known that Independent Set is W [1]-hard parameterized by solution size.

Our work

Parameter: $\left|E_{H}\right|+\left|V_{F}\right|$ (strong edges + size of F)

Observation: G has a spanning subgraph H satisfying the $p K_{1}$-closure iif G is $p K_{1}$-free.
It is known that Independent Set is W [1]-hard parameterized by solution size.

Proposition

Strong ($p K_{1}+K_{2}$)-closure can be solved in time $n^{O(p)}$, and it is co- $W[1]$-hard for $k \geq 1$ when parameterized by p.

Our work

Parameter: $\left|E_{H}\right|+\left|V_{F}\right|$ (strong edges + size of F)

Observation: G has a spanning subgraph H satisfying the $p K_{1}$-closure iif G is $p K_{1}$-free.
It is known that Independent Set is W [1]-hard parameterized by solution size.

Proposition

Strong ($p K_{1}+K_{2}$)-CLOSURE can be solved in time $n^{O(p)}$, and it is co- W [1]-hard for $k \geq 1$ when parameterized by p.

Observation: A subgraph H satisfies the $\left(p K_{1}+K_{2}\right)$-closure if and only if for every $u v \in E_{H}, G-N_{G}[\{u, v\}]$ has no independent set of size p.

Our work

Parameter: $\left|E_{H}\right|+\left|V_{F}\right|$ (strong edges + size of F)

Observation: G has a spanning subgraph H satisfying the $p K_{1}$-closure iif G is $p K_{1}$-free.
It is known that Independent Set is W [1]-hard parameterized by solution size.

Proposition

Strong $\left(p K_{1}+K_{2}\right)$-CLOSURE can be solved in time $n^{O(p)}$, and it is co- $W[1]$-hard for $k \geq 1$ when parameterized by p.

Observation: A subgraph H satisfies the ($p K_{1}+K_{2}$)-closure if and only if for every $u v \in E_{H}, G-N_{G}[\{u, v\}]$ has no independent set of size p.

Our work

Parameter: $\left|E_{H}\right|+\left|V_{F}\right|$ (strong edges + size of F)

Observation: G has a spanning subgraph H satisfying the $p K_{1}$-closure iif G is $p K_{1}$-free.
It is known that Independent Set is W [1]-hard parameterized by solution size.

Proposition

Strong $\left(p K_{1}+K_{2}\right)$-CLOSURE can be solved in time $n^{O(p)}$, and it is co- $W[1]$-hard for $k \geq 1$ when parameterized by p.

Observation: A subgraph H satisfies the ($p K_{1}+K_{2}$)-closure if and only if for every $u v \in E_{H}, G-N_{G}[\{u, v\}]$ has no independent set of size p.

Our work

Parameter: $\left|E_{H}\right|+\left|V_{F}\right|$ (strong edges + size of F)

Observation: G has a spanning subgraph H satisfying the $p K_{1}$-closure iif G is $p K_{1}$-free.
It is known that Independent Set is W [1]-hard parameterized by solution size.

Proposition

Strong $\left(p K_{1}+K_{2}\right)$-CLOSURE can be solved in time $n^{O(p)}$, and it is co- $W[1]$-hard for $k \geq 1$ when parameterized by p.

Observation: A subgraph H satisfies the ($p K_{1}+K_{2}$)-closure if and only if for every $u v \in E_{H}, G-N_{G}[\{u, v\}]$ has no independent set of size p.

Our work

Parameter: $\left|E_{H}\right|+\left|V_{F}\right|$ (strong edges + size of F)

Observation: G has a spanning subgraph H satisfying the $p K_{1}$-closure iif G is $p K_{1}$-free.
It is known that Independent Set is W [1]-hard parameterized by solution size.

Proposition

Strong $\left(p K_{1}+K_{2}\right)$-CLOSURE can be solved in time $n^{O(p)}$, and it is co- $W[1]$-hard for $k \geq 1$ when parameterized by p.

Observation: A subgraph H satisfies the $\left(p K_{1}+K_{2}\right)$-closure if and only if for every $u v \in E_{H}, G-N_{G}[\{u, v\}]$ has no independent set of size p.

Our work

Parameter: $\left|E_{H}\right|+\left|V_{F}\right|$ (strong edges + size of F)

Observation: G has a spanning subgraph H satisfying the $p K_{1}$-closure iif G is $p K_{1}$-free.
It is known that Independent Set is W [1]-hard parameterized by solution size.

Proposition

Strong $\left(p K_{1}+K_{2}\right)$-CLOSURE can be solved in time $n^{O(p)}$, and it is co- $W[1]$-hard for $k \geq 1$ when parameterized by p.

Observation: A subgraph H satisfies the $\left(p K_{1}+K_{2}\right)$-closure if and only if for every $u v \in E_{H}, G-N_{G}[\{u, v\}]$ has no independent set of size p.

Our work

Parameter: $\left|E_{H}\right|+\left|V_{F}\right|$ (strong edges + size of F)

Observation: G has a spanning subgraph H satisfying the $p K_{1}$-closure iif G is $p K_{1}$-free.
It is known that Independent Set is W [1]-hard parameterized by solution size.

Proposition

Strong $\left(p K_{1}+K_{2}\right)$-CLOSURE can be solved in time $n^{O(p)}$, and it is co- $W[1]$-hard for $k \geq 1$ when parameterized by p.

Observation: A subgraph H satisfies the ($p K_{1}+K_{2}$)-closure if and only if for every $u v \in E_{H}, G-N_{G}[\{u, v\}]$ has no independent set of size p.

Our work

Parameter: $\left|E_{H}\right|+\left|V_{F}\right|$ (strong edges + size of F)

Observation: G has a spanning subgraph H satisfying the $p K_{1}$-closure iif G is $p K_{1}$-free.
It is known that Independent Set is W [1]-hard parameterized by solution size.

Proposition

Strong $\left(p K_{1}+K_{2}\right)$-CLOSURE can be solved in time $n^{O(p)}$, and it is co- $W[1]$-hard for $k \geq 1$ when parameterized by p.

Observation: A subgraph H satisfies the ($p K_{1}+K_{2}$)-closure if and only if for every $u v \in E_{H}, G-N_{G}[\{u, v\}]$ has no independent set of size p.

Our work

Parameter: $\left|E_{H}\right|+\left|V_{F}\right|$ (strong edges + size of F)
We now show that if $\left|E_{F}\right| \geq 2$ then Strong F-Closure is FPT.

Our work

Parameter: $\left|E_{H}\right|+\left|V_{F}\right|$ (strong edges + size of F)
We now show that if $\left|E_{F}\right| \geq 2$ then Strong F-Closure is FPT.
Case 1. F has a connected component with at least 3 vertices.
Case 2. $F=p K_{1}+q K_{2}$, with $p \geq 0$ and $q \geq 2$.

Our work

Parameter: $\left|E_{H}\right|+\left|V_{F}\right|$ (strong edges + size of F)
We now show that if $\left|E_{F}\right| \geq 2$ then Strong F-Closure is FPT.

Our work

Parameter: $\left|E_{H}\right|+\left|V_{F}\right|$ (strong edges + size of F)
We now show that if $\left|E_{F}\right| \geq 2$ then Strong F-Closure is FPT.

Lemma

If F has a connected component with at least 3 vertices, Strong F-Closure has a kernel.

Our work

Parameter: $\left|E_{H}\right|+\left|V_{F}\right|$ (strong edges + size of F)
We now show that if $\left|E_{F}\right| \geq 2$ then Strong F-Closure is FPT.

Lemma

If F has a connected component with at least 3 vertices, Strong F-Closure has a kernel.

Rule 1. If there is a set of $\left|V_{F}\right|+k+1$ false twins in G, then remove one of them.

Our work

Parameter: $\left|E_{H}\right|+\left|V_{F}\right|$ (strong edges + size of F)
We now show that if $\left|E_{F}\right| \geq 2$ then Strong F-Closure is FPT.

Lemma

If F has a connected component with at least 3 vertices, Strong F-Closure has a kernel.

Rule 1. If there is a set of $\left|V_{F}\right|+k+1$ false twins in G, then remove one of them.
Find maximal matching M.

Our work

Parameter: $\left|E_{H}\right|+\left|V_{F}\right|$ (strong edges + size of F)
We now show that if $\left|E_{F}\right| \geq 2$ then Strong F-Closure is FPT.

Lemma

If F has a connected component with at least 3 vertices, Strong F-Closure has a kernel.

Rule 1. If there is a set of $\left|V_{F}\right|+k+1$ false twins in G, then remove one of them.
Find maximal matching M.
Note that $E_{H}=M$ satisfies Strong F-Closure. If $|M| \geq k$ then this is a solution.

Our work

Parameter: $\left|E_{H}\right|+\left|V_{F}\right|$ (strong edges + size of F)

We now show that if $\left|E_{F}\right| \geq 2$ then Strong F-Closure is FPT.

Lemma

If F has a connected component with at least 3 vertices, Strong F-Closure has a kernel.

Rule 1. If there is a set of $\left|V_{F}\right|+k+1$ false twins in G, then remove one of them.
Find maximal matching M.
Note that $E_{H}=M$ satisfies Strong F-closure. If $|M| \geq k$ then this is a solution.
Otherwise, $X=V_{M}$ with $|X| \leq 2 k-2$
$Y=V_{G} \backslash X$ is an independent set

Our work

Parameter: $\left|E_{H}\right|+\left|V_{F}\right|$ (strong edges + size of F)

We now show that if $\left|E_{F}\right| \geq 2$ then Strong F-Closure is FPT.

Lemma

If F has a connected component with at least 3 vertices, Strong F-Closure has a kernel.

Rule 1. If there is a set of $\left|V_{F}\right|+k+1$ false twins in G, then remove one of them.
Find maximal matching M.
Note that $E_{H}=M$ satisfies Strong F-closure. If $|M| \geq k$ then this is a solution.
Otherwise, $X=V_{M}$ with $|X| \leq 2 k-2$ $Y=V_{G} \backslash X$ is an independent set At most $2^{|X|}$ vertices of Y with distinct neighborhoods. Every false twin class has size at most $\left|V_{F}\right|+k$.

Our work

Parameter: $\left|E_{H}\right|+\left|V_{F}\right|$ (strong edges + size of F)
We now show that if $\left|E_{F}\right| \geq 2$ then Strong F-Closure is FPT.

Lemma

If F has a connected component with at least 3 vertices, Strong F-Closure has a kernel.

Our work

Parameter: $\left|E_{H}\right|+\left|V_{F}\right|$ (strong edges + size of F)
We now show that if $\left|E_{F}\right| \geq 2$ then Strong F-Closure is FPT.

Lemma

If F has a connected component with at least 3 vertices, Strong F-Closure has a kernel.

Lemma

Strong ($p K_{1}+q K_{2}$)-Closure with $p \geq 0$ and $q \geq 2$ can be solved in FPT time.

Our work

Parameter: $\left|E_{H}\right|+\left|V_{F}\right|$ (strong edges + size of F)
We now show that if $\left|E_{F}\right| \geq 2$ then Strong F-Closure is FPT.

Lemma

If F has a connected component with at least 3 vertices, Strong F-Closure has a kernel.

Lemma

Strong $\left(p K_{1}+q K_{2}\right)$-Closure with $p \geq 0$ and $q \geq 2$ can be solved in FPT time.

Theorem

If $F \neq p K_{1}$ with $p \geq 1$ and $F \neq p K_{1}+K_{2}$ with $p \geq 0$, then Strong F-Closure is FPT parameterized by $\left|E_{H}\right|+\left|V_{F}\right|$.

Our work

Theorem

If $F \neq p K_{1}$ with $p \geq 1$ and $F \neq p K_{1}+K_{2}$ with $p \geq 0$, then Strong F-Closure is FPT parameterized by $\left|E_{H}\right|+\left|V_{F}\right|$.

Our work

Theorem

If $F \neq p K_{1}$ with $p \geq 1$ and $F \neq p K_{1}+K_{2}$ with $p \geq 0$, then Strong F-Closure is FPT parameterized by $\left|E_{H}\right|+\left|V_{F}\right|$.

Also, if $\left|E_{F}\right|>k$ then (G, k) is a yes-instance of Strong F-Closure.

Our work

Theorem

If $F \neq p K_{1}$ with $p \geq 1$ and $F \neq p K_{1}+K_{2}$ with $p \geq 0$, then Strong F-Closure is FPT parameterized by $\left|E_{H}\right|+\left|V_{F}\right|$.

Also, if $\left|E_{F}\right|>k$ then (G, k) is a yes-instance of Strong F-Closure.
If $\left|E_{F}\right| \leq k$ and F has no isolated vertices, $\left|V_{F}\right| \leq k$.

Our work

Theorem

If $F \neq p K_{1}$ with $p \geq 1$ and $F \neq p K_{1}+K_{2}$ with $p \geq 0$, then Strong F-Closure is FPT parameterized by $\left|E_{H}\right|+\left|V_{F}\right|$.

Also, if $\left|E_{F}\right|>k$ then (G, k) is a yes-instance of Strong F-Closure.
If $\left|E_{F}\right| \leq k$ and F has no isolated vertices, $\left|V_{F}\right| \leq k$.

Corollary

If F has no isolated vertices, Strong F-Closure is FPT parameterized by $\left|E_{H}\right|$, even when F is given as part of the input.

Our work

Parameter	Restriction	Parameterized Complexity	
$\left\|E_{H}\right\|+\left\|V_{F}\right\|$	$\frac{\left\|E_{F}\right\| \leq 1}{\left\|E_{F}\right\| \geq 2}$	co- W [1]-hard	
	F has a component with ≥ 3 vertices, G is d-degenerate	polynomial kernel	
	$\left\|E_{H}\right\|$		

Our work

Parameter	Restriction	Parameterized Complexity			
$\left\|E_{H}\right\|+\left\|V_{F}\right\|$	$\frac{\left\|E_{F}\right\| \leq 1}{\left\|E_{F}\right\| \geq 2}$	co- W [1]-hard			
	F has a component with ≥ 3 vertices, G is d-degenerate	polynomial kernel			
	$\left\|E_{H}\right\|$		F has no isolated vertices	FPT	$F=P_{3}, G$ is split
:---					

F has a connected component with at least three vertices:
If H is a matching, then H satisfies the F-Closure.

Our work

Parameter	Restriction	Parameterized Complexity	
$\left\|E_{H}\right\|+\left\|V_{F}\right\|$	$\frac{\left\|E_{F}\right\| \leq 1}{\left\|E_{F}\right\| \geq 2}$	co- W [1]-hard	
	F has a component with ≥ 3 vertices, G is d-degenerate	polynomial kernel	
	$\left\|E_{H}\right\|$		

Our work

Parameter	Restriction	Parameterized Complexity
$\left\|E_{H}\right\|+\left\|V_{F}\right\|$	$\frac{\left\|E_{F}\right\| \leq 1}{}$	$\left\|E_{F}\right\| \geq 2$ co- $W[1]$-hard F has a component with ≥ 3 vertices, G is d-degenerate
	pPT polynomial kernel	
	F has no isolated vertices	FPT
$\left\|E_{H}\right\|-\nu(G)$	$F=P_{3}, G$ is split	no polynomial kernel
	$F=K_{1, t}, t \geq 3$	FPT

Our work

Parameter: $\left|E_{G}\right|-\left|E_{H}\right|$ (weak edges)

Our work

Parameter: $\left|E_{G}\right|-\left|E_{H}\right|$ (weak edges)

Theorem

For every fixed graph F, Strong F-closure can be solved in time $2^{O(\ell)} \cdot n^{O(1)}$, where $\ell=\left|E_{G}\right|-\left|E_{H}\right|$.

Our work

Parameter: $\left|E_{G}\right|-\left|E_{H}\right|$ (weak edges)

Theorem

For every fixed graph F, Strong F-closure can be solved in time $2^{O(\ell)} \cdot n^{O(1)}$, where $\ell=\left|E_{G}\right|-\left|E_{H}\right|$.

1. List all induced subgraphs of G isomorphic to F.

- F fixed \rightarrow poly-time.

Our work

Parameter: $\left|E_{G}\right|-\left|E_{H}\right|$ (weak edges)

Theorem

For every fixed graph F, Strong F-closure can be solved in time $2^{O(\ell)} \cdot n^{O(1)}$, where $\ell=\left|E_{G}\right|-\left|E_{H}\right|$.

1. List all induced subgraphs of G isomorphic to F.

- F fixed \rightarrow poly-time.

2. For each induced subgraph $F^{\prime} \simeq F$ we check whether $G\left[V_{F^{\prime}}\right]$ has a weak edge.

- If it does not, then we must make at least one of the edges of $G\left[V_{F^{\prime}}\right]$ weak.
- Branch.

Our work

Parameter	Restriction	Parameterized Complexity
$\left\|E_{H}\right\|+\left\|V_{F}\right\|$	$\frac{\left\|E_{F}\right\| \leq 1}{}$	$\left\|E_{F}\right\| \geq 2$ co- $W[1]$-hard F has a component with ≥ 3 vertices, G is d-degenerate
	pPT polynomial kernel	
	F has no isolated vertices	FPT
$\left\|E_{H}\right\|-\nu(G)$	$F=P_{3}, G$ is split	no polynomial kernel
	$F=K_{1, t}, t \geq 3$	FPT

Our work

Parameter	Restriction	Parameterized Complexity
$\left\|E_{H}\right\|+\left\|V_{F}\right\|$	$\left\|E_{F}\right\| \leq 1$	co-W[1]-hard
	$\left\|E_{F}\right\| \geq 2$	FPT
	F has a component with ≥ 3 vertices, G is d-degenerate	polynomial kernel
$\left\|E_{H}\right\|$	F has no isolated vertices	FPT
	$F=P_{3}, G$ is split	no polynomial kernel
$\left\|E_{H}\right\|-\nu(G)$	$F=P_{3}, \Delta(G) \leq 4$	FPT
	$F=K_{1, t}, t \geq 3$	FPT
$\left\|E_{G}\right\|-\left\|E_{H}\right\|$	None	FPT
		poly generalized kernel

Thank you! \because

