Incompressibility of H -free edge modification problems: Towards a dichotomy

Sandeep R. B.

IIT Dharwad, India
Work in progress with Dániel Marx
Max Planck Institute for Informatics, Germany

Workshop on Graph Modification, Bergen
January 23, 2020

H-free edge modification problems

Definition

For a graph H, an H-free edge modification problem is to check whether there exist at most k edges in the input graph such that modifying them results in a graph without any induced copy of H.

H-free edge modification problems

Definition

For a graph H, an H-free edge modification problem is to check whether there exist at most k edges in the input graph such that modifying them results in a graph without any induced copy of H.

Types:

- H-free Edge Deletion
- H-free Edge Completion
- H-free Edge Editing

An Example: P_{3}-Free Edge Editing

An Example: P_{3}-Free Edge Editing

Do there exist at most 3 edges or non-edges in the following graph, editing which results in a P_{3}-free graph?

An Example: P_{3}-Free Edge Editing

Do there exist at most 3 edges or non-edges in the following graph, editing which results in a P_{3}-free graph?

An Example: P_{3}-Free Edge Editing

Do there exist at most 3 edges or non-edges in the following graph, editing which results in a P_{3}-free graph?

NP-completeness

A dichotomy was obtained by Aravind, Sandeep, and Sivadasan [SIDMA, 2017].

	P	NP-complete
H-free Edge Editing	$\|V(H)\|<3$	$\|V(H)\| \geq 3$
H-free Edge Deletion	$\|E(H)\|<2$	$\|E(H)\| \geq 2$
H-free Edge Completion	$\|\bar{E}(H)\|<2$	$\|\bar{E}(H)\| \geq 2$

NP-completeness

A dichotomy was obtained by Aravind, Sandeep, and Sivadasan [SIDMA, 2017].

	P	NP-complete
H-free Edge Editing	$\|V(H)\|<3$	$\|V(H)\| \geq 3$
H-free Edge Deletion	$\|E(H)\|<2$	$\|E(H)\| \geq 2$
H-free Edge Completion	$\|\bar{E}(H)\|<2$	$\|\bar{E}(H)\| \geq 2$

Folklore:

- H-free Edge Editing is polynomial-time solvable if and only if \bar{H}-free Edge Editing is polynomial-time solvable
- H-free Edge Deletion is polynomial-time solvable if and only if \bar{H}-free Edge Completion is polynomial-time solvable.

Parameterized complexity

- Parameter: k
- All H-free edge modification problems are in FPT [Cai, IPL, 1996]
- A simple branching algorithm has a complexity $O^{*}\left(2^{O(k)}\right)$
- But no parameterized subexponential-time $\left(O^{*}\left(2^{0(k)}\right)\right)$ algorithm for the hard cases (assuming the ETH) [SIDMA, 2017]

Polynomial kernelization

- First incompressibility results by Kratsch and Wahlström[Discrete Optimization, 2013]
- Completely settled: Paths, Cycles and 3-connected graphs [Cai and Cai, Algorithmica, 2015]
- Diamond - $>$ [Cao, Rai, Sandeep, Ye, ESA 2018]
- Paw - \&. [Eiben, Lochet, Sourabh, 2019; Cao, Ke, Yuan, 2019]

Our results

- A complete dichotomy for regular graphs H : For a regular graph H, H-free edge modification problems do not admit polynomial kernels if and only if H is neither empty nor complete (incompressibility assumes NP \nsubseteq coNP/poly).

Our results

- A complete dichotomy for regular graphs H : For a regular graph H, H-free edge modification problems do not admit polynomial kernels if and only if H is neither empty nor complete (incompressibility assumes NP \nsubseteq coNP/poly).
- A conditional dichotomy for H-free Edge Editing: For a graph H with at least five vertices, H-free Edge Editing admits no polynomial kernel if and only if H is neither complete nor empty, provided the problem does not admit polynomial kernel when H is one in the set of 2014 graphs (shown in the next slide).

The gang of twenty

\#	H	\bar{H}
1		$\underbrace{9}_{0}$
2		$\underbrace{0}_{0}$
3	0 0	
4		
5		
6		
7		

\#	H	\bar{H}
8		
9		
10		same
11	$\stackrel{\infty}{\infty}$	
12	0	
13		
14		

\#	H	\bar{H}
15	$\underbrace{0}_{0} 0$	
16		
17	Cosios	
18		
19	$\frac{0}{80}$	same
20	on	same

Polynomial Parameter Transformation (PPT)

- Polynomial Parameter Transformation (PPT) is a polynomial time reduction from one parameterized problem to another such that the resultant parameter is polynomially bounded in the original parameter.

Polynomial Parameter Transformation (PPT)

- Polynomial Parameter Transformation (PPT) is a polynomial time reduction from one parameterized problem to another such that the resultant parameter is polynomially bounded in the original parameter.
- If there is a PPT from a problem P to Q and if P is incompressible (no polynomial kernel exists) then so is Q.

Polynomial Parameter Transformation (PPT)

- Polynomial Parameter Transformation (PPT) is a polynomial time reduction from one parameterized problem to another such that the resultant parameter is polynomially bounded in the original parameter.
- If there is a PPT from a problem P to Q and if P is incompressible (no polynomial kernel exists) then so is Q.
- For every graph H we give a sequence of PPTs from H^{\prime}-free Edge Editing to H-free Edge Editing, where H^{\prime} is among the 20 graphs or the corresponding problem is known to be incompressible.

Regular graphs

For a connected graph G, we say that G has a non-separating subgraph G^{\prime}, if there exist a vertex set $U \subseteq V(G)$ such that U induces G^{\prime} in G and $G-U$ is connected.

Lemma

Let G be a connected regular graph which is not complete. Then either of the following two statements holds true:
(i) G has a non-separating $2 K_{2}, C_{4}$ or C_{5}.
(ii) \bar{G} is connected and has a non-separating C_{4}.

Regular graphs...

- For a connected r-regular graph H, which is not complete, we give a PPT from H^{\prime}-free Edge Editing to H-free Edge Editing where H^{\prime} is either a $2 K_{2}, C_{4}$, or C_{5}.

Regular graphs...

- For a connected r-regular graph H, which is not complete, we give a PPT from H^{\prime}-free Edge Editing to H-free Edge Editing where H^{\prime} is either a $2 K_{2}, C_{4}$, or C_{5}.
- By a result in [SIDMA 2017], if the incompressibility for connected regular graphs implies that of all regular graphs which are neither complete nor empty.

A Construction

Taken from [SIDMA, 2017]
Input: Graphs: G^{\prime} and $H ; V^{\prime} \subseteq V(H)$; integer k.
Output: Graph G.
Let H^{\prime} be $H\left[V^{\prime}\right]$.

A Construction

Taken from [SIDMA, 2017]
Input: Graphs: G^{\prime} and $H ; V^{\prime} \subseteq V(H)$; integer k.
Output: Graph G.
Let H^{\prime} be $H\left[V^{\prime}\right]$.

A Construction

Taken from [SIDMA, 2017]
Input: Graphs: G^{\prime} and $H ; V^{\prime} \subseteq V(H)$; integer k.
Output: Graph G.
Let H^{\prime} be $H\left[V^{\prime}\right]$.

Identifying the gang

Theorem

There exists a set \mathcal{H} of twenty graphs such that if H-free Edge Editing is incompressible for every $H \in \mathcal{H}$, then H-free Edge Editing is incompressible for every H having at least five vertices but is neither complete nor empty.

Identifying the gang

Theorem

There exists a set \mathcal{H} of twenty graphs such that if H-free Edge Editing is incompressible for every $H \in \mathcal{H}$, then H-free Edge Editing is incompressible for every H having at least five vertices but is neither complete nor empty.

$$
\begin{aligned}
\mathcal{X}=\{ & C_{\ell}, C_{\ell} \text { for all } \ell \geq 4, \\
& P_{\ell}, \overline{P_{\ell}} \text { for all } \ell \geq 5, \\
& H \text { such that either } H \text { or } \bar{H} \text { is 3-connected but not complete } \\
& H \text { such that } H \text { is regular but is neither complete nor empty }\} \\
\mathcal{Y}=\{ & K_{t}, \overline{K_{t}} \text { for all } t \geq 1, \\
& P_{3}, \overline{P_{3}}, P_{4}, \\
& \text { diamond, } \overline{\text { diamond }, ~ p a w, ~} \overline{\text { paw }}, \text { claw, } \overline{\text { claw } ~}\}
\end{aligned}
$$

Identifying the gang...

- H is reducible to $H^{\prime}:=$ there is a PPT from H^{\prime}-free Edge Editing to H-free Edge Editing.
- A set of graphs \mathcal{H} is called base for a set \mathcal{G} of graphs, if every graph $H \in \mathcal{G}$ can be reduced to a graph $H^{\prime} \in \mathcal{H} \cup \mathcal{X}$.
- The objective is to find a base for all graphs with at least five vertices which are neither complete nor empty.

Churning H

Proposition (SIDMA 2017)

Let H^{\prime} be obtained from H by deleting all lowest $\left(V_{\ell}\right)$ or highest $\left(V_{h}\right)$ degree vertices. Then H is reducible to H^{\prime}.

Churning H

Proposition (SIDMA 2017)

Let H^{\prime} be obtained from H by deleting all lowest $\left(V_{\ell}\right)$ or highest $\left(V_{h}\right)$ degree vertices. Then H is reducible to H^{\prime}.

Churn (H) : // H is a graph with at least five vertices and is neither complete nor empty.

Step 1: If $H \in \mathcal{X}$, then return H.
Step 2: If $H-V_{\ell} \notin \mathcal{Y}$, then $H=H-V_{\ell}$ and goto Step 1 .
Step 3: If $H-V_{h} \notin \mathcal{Y}$, then $H=H-V_{h}$ and goto Step 1 .
Step 4: Return H.

Case analysis

$H-V_{\ell}$	$H-V_{h}$	Complete
Complete	$\left\{C_{4}, H_{6}\right\}$	$\left\{H_{4}, H_{6}, H_{10}, H_{11}, H_{14}, H_{18}, H_{19}, H_{20}\right\}$
P_{3}	\emptyset	$\left\{C_{4}, H_{1}\right\}$
P_{4}	\emptyset	$\left\{H_{5}\right\}$
claw	\emptyset	$\left\{H_{2}\right\}$
paw	\emptyset	$\left\{H_{7}, H_{17}\right\}$
diamond	$\left\{C_{4}, H_{3}\right\}$	$\left\{H_{3}, H_{8}, H_{9}, H_{15}, H_{16}\right\}$

Case analysis...

$\begin{array}{ll} & H-V_{h} \\ \hline \end{array}$	P_{3}	P_{4}	claw	paw	diamond
P_{3}	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset
P_{4}	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset
claw	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset
paw	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset
diamond	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset
$H-V_{\ell} \quad H-V_{h}$	$\overline{P_{3}}$	P_{4}	claw	paw	diamond
P_{3}	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset
P_{4}	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset
claw	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset
paw	\emptyset	\emptyset	\emptyset	\emptyset	$\left\{H_{12}, H_{13}\right\}$
diamond	\emptyset	\emptyset	\emptyset	\emptyset	$\left\{\mathrm{H}_{3}\right\}$
$\begin{array}{ll} \hline \hline & H-V_{\ell} \\ \hline \end{array}$	P_{3}	P_{4}	claw	paw	diamond
$\overline{P_{3}}$	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset
P_{4}	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset
claw	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset
paw	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset
diamond	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset

Taming the gang

Cai and Cai [Algorithmica, 2015] has a general PPT from a satisfiability problem, which can be used to prove the incompressibility of 6 among the gang.
$\# 1$
$\#+1$
$\#+1$ H

Open problem: Incompressible?

Eliminate the gang!

Open problem: Polynomial Kernels?

Future problems: Deletion and Completion

Obtain similar sets of base graphs for H-free Edge Deletion and H-free Edge Completion.

Future problems: Complexity of $\left\{H_{1}, H_{2}\right\}$-free edge modification problems

Obtain complexity dichotomy (P or NP-hard) for $\left\{H_{1}, H_{2}\right\}$-free edge modification problems.

Thank You!

