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The result

Theorem
The paw-free modification problem has a kernel on:

• O(k3) vertices for deletion/addition.

• O(k6) vertices for edition.

We use the following structural result:

Proposition
If G is paw-free, then the connected components of G are either:

• Triangle-free

• Complete-multipartite
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General approach

Let H be a maximal packing of edge-disjoint paws, either:

• |H| ≥ k + 1 and the instance is a NO-instance

• There is a set S ⊆ V (G) of size at most 4k s.t G− S is
paw-free

S
Goal is to bound:

• triangle-free components

• complete-multipartite
components
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Complete multipartite
components (CMC)



Twins

Reduction rule 1 (RR1)
If X is an independent set of 2k + 5 vertices with the same
neighborhood, remove one vertex x ∈ X.

Let G′ denote the reduced instance.

• If (G, k) has a solution, then so does (G′, k) because G′ is a
subgraph of G

Claim
Suppose A is a set of less than k pairs of vertices, such that
G∆A has a paw, then G′∆A has one.

• If x not in the paw → easy.
• Only 2k vertices of X can be adjacent to A.
• In G′∆A there at least 4 vertices of X have the same

neighborhood as x in G∆A → can replace x in the paw.
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Number of parts

A very similar arguments shows safeness of the following rule.

Reduction rule 2 (RR2)
If there is a complete multipartite subgraph C of G with 2k + 5

parts having the same neighborhood outside of C, then remove
one of these parts.

• RR1 is easy to apply.

• RR2 not so obvious → specific situations.
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Size of the parts

Suppose RR 1 cannot be applied anymore.

Reduction rule 3 (RR3)
If C is a CMC of G− S and P a part of size at least 4k + 5,
removed all the edges between the other parts of C, and
decrease k accordingly.

P
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Size of the parts

Suppose there is solution A which does not use one of these
edges.

P

• There are 2k + 5 vertices of P not adjacent to A.
• These vertices belong to a CCM of G∆A.
• They are twins in G and RR1 could have been applied.
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Total size

Suppose RR1 and RR3 cannot be applied anymore.

Lemma
If C is a CMC of G− S and |C| > (4k + 5)2, then either RR2
can be applied in polynomial time, or (G, k) is a NO instance.

• RR3 cannot be applied ⇒ no part is bigger than 4k + 5

• If there is more than 4k + 5 parts, 2k + 5 won’t be touched
by a solution ⇒ we can apply RR2.
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Number of CMC

Lemma
For any s ∈ (S ∪S′), s is adjacent to at most one CMC of G−S
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Summary

Lemma
If RR1-2-3 cannot be applied, then either (G, k) is a NO-instance
or the set of vertices in CMCs of G− S has size O(k3).

• We know there is at most |S| of components

• Each has size at most O(k2)
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Triangle Free Components



Removing triangles

Claim
There exists a set S′ of size O(k2) such that no vertex of TFC of
G− (S′ ∪ S) belongs to a triangle.

S
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First observation

Lemma
If x ∈ G has 6k + 10 neighbors in TFC of G− S and A is a
solution, then x is in a TFC of G∆A.

Suppose x belongs to some CMC C in G∆A.

• 4k + 10 of the neighbors won’t be adjacent to the solution

• They belong to at most two parts of C

• One part is bigger than 2k + 5 and we can apply RR1
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Kernel for deletion

Theorem
Paw-free deletion admits a O(k3) kernel.

• At most O(k3) vertices belongs to CMC of G′ − S.

• For every s ∈ (S′ ∪ S), mark 6k + 10 vertices in TFC.

• Remove all the unmarked vertices.

The graph G′ induced by all the marked vertices is the kernel.
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Proof

Claim
For any set A of less than k pairs, G∆A is paw-free ⇐⇒
G′∆A is paw-free

⇒ G′ is a subgraph of G
⇐ Suppose G′∆A is paw free, but G∆A has a paw x1x2x3 − x4

• The triangle x1x2x3 is a triangle of G and thus G′.

• Thus x4 is an unmarked vertex of some TFC.

• x3 is a vertex of (S ∪ S′) with 6k + 10 adjacent vertices.

• In G′∆A, x3 has to be in a TFC, a contradiction.
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Edge-editing

• Marking 6k + 10 vertices → know which vertices of (S ∪ S′)

must belong to TFC in the solution.

• In the modification problem, vertices in TFC of
G− (S ∪ S′) can end up in CMC of G∆A.

Lemma
Let (G, k) be a YES instance, there exists a solution A s.t no
CMC of G∆A contains a vertex at distance 5 from S in G.
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Distance to S

• Let A be a solution minimizing the CMC of D∆A

• C1, . . . , Cl the parts of a CMC C of G∆A

• Ci,j the set of vertices of Ci at distance j from S

• Ci,j =
⋃

t6=iCt,j

C1 C2

C1,1

C1,2

C1,1
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Proof

Lemma
For any j > 3, i ∈ [l], if Ci,0 ∪ Ci,1 is non empty, then Ci,j is.

Suppose it is not:

• A must contain all the edges in Ci,j × (Ci,0 ∪ Ci,1 ∪ Ci,2)

• Removing Ci,j from C costs |E(Ci,j , (Ci,j−1 ∪Ci,j ∪Ci,j+1))|

• This means |Ci,j−1 ∪ Ci,j ∪ Ci,j+1| ≥ |Ci,0 ∪ Ci,1 ∪ Ci,2|
• A must contain (Ci,0 ∪ Ci,1)× (Ci,j−1 ∪ Ci,j ∪ Ci,j+1)

• Removing (Ci,0 ∪ Ci,1) from C costs
(Ci,0 ∪ Ci,1)× (Ci,0 ∪ Ci,1 ∪ Ci,2).

Contradiction to the minimality of |C| !
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Proof

For any j, let Sj =
⋃

i∈[r]Ci,j . Previous result implies that:

Lemma
If Si non-empty for i > 3, then (S1 ∪ S0)× Si ⊂ A.

Indeed Sj and (S0 ∪ S1) belong to different parts of C.

Lemma
If S5 is non empty,|S4| ≥ |S1 ∪ S0|

• S4 is not empty

• A contains S5 × (S0 ∪ S1)

• Disconnecting S5 from C costs |EG(S4, S5)|
• This means that |S4||S5| ≥ |EG(S4, S5)| ≥ |S5||S1 ∪ S0|
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Proof

Lemma
Sj is empty for j ≥ 5

• S4 is not empty

• A contains S4 × (S0 ∪ S1)

• Disconnecting S1 from S0 costs less than |S1 ∪ S0|2

• Previous lemma ⇒ |S4||S1 ∪ S0| ≥ |S1 ∪ S0|2

Therefore the solution A′ obtained from A by disconnecting S1

from S0 and removing all the pairs of A of the form (x, y) with
x ∈ S0, y ∈ Sj for i ≥ 0 and j ≥ 1 is a better solution.

Lemma
Let (G, k) be a YES instance, there exists a solution A s.t no
CMC of G∆A contains a vertex at distance 5 from S in G.
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Thank you!
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