A Polynomial Kernel for Paw-Free Editing

William Lochet, Univeristy of Bergen.

Joint work with E. Eiben, and S. Saurabh

The result

Theorem

The paw-free modification problem has a kernel on:

- $O\left(k^{3}\right)$ vertices for deletion/addition.
- $O\left(k^{6}\right)$ vertices for edition.

We use the following structural result:

Proposition

If G is paw-free, then the connected components of G are either:

- Triangle-free
- Complete-multipartite

General approach

Let \mathcal{H} be a maximal packing of edge-disjoint paws, either:

- $|\mathcal{H}| \geq k+1$ and the instance is a NO-instance
- There is a set $S \subseteq V(G)$ of size at most $4 k$ s.t $G-S$ is paw-free

Goal is to bound:

- triangle-free components
- complete-multipartite components

Complete multipartite components (CMC)

Twins

Reduction rule 1 (RR1)

If X is an independent set of $2 k+5$ vertices with the same neighborhood, remove one vertex $x \in X$.

Twins

Reduction rule 1 (RR1)

If X is an independent set of $2 k+5$ vertices with the same neighborhood, remove one vertex $x \in X$.

Let G^{\prime} denote the reduced instance.

- If (G, k) has a solution, then so does $\left(G^{\prime}, k\right)$ because G^{\prime} is a subgraph of G

Claim
Suppose A is a set of less than k pairs of vertices, such that
$G \Delta A$ has a paw, then $G^{\prime} \Delta A$ has one.

- If x not in the paw \rightarrow easy.
- Only $2 k$ vertices of X can be adjacent to A.
- In $G^{\prime} \Delta A$ there at least 4 vertices of X have the same neighborhood as x in $G \Delta A \rightarrow$ can replace x in the paw.

Number of parts

A very similar arguments shows safeness of the following rule.
Reduction rule 2 (RR2)
If there is a complete multipartite subgraph C of G with $2 k+5$ parts having the same neighborhood outside of C, then remove one of these parts.

- RR1 is easy to apply.
- RR2 not so obvious \rightarrow specific situations.

Size of the parts

Suppose RR 1 cannot be applied anymore.
Reduction rule 3 (RR3)
If C is a CMC of $G-S$ and P a part of size at least $4 k+5$,
removed all the edges between the other parts of C, and decrease k accordingly.

Size of the parts

Suppose there is solution A which does not use one of these edges.

- There are $2 k+5$ vertices of P not adjacent to A.
- These vertices belong to a CCM of $G \Delta A$.
- They are twins in G and RR1 could have been applied.

Total size

Suppose RR1 and RR3 cannot be applied anymore.
Lemma
If C is a $C M C$ of $G-S$ and $|C|>(4 k+5)^{2}$, then either RR2 can be applied in polynomial time, or (G, k) is a NO instance.

- RR 3 cannot be applied \Rightarrow no part is bigger than $4 k+5$
- If there is more than $4 k+5$ parts, $2 k+5$ won't be touched by a solution \Rightarrow we can apply RR2.

Number of CMC

Lemma
For any $s \in\left(S \cup S^{\prime}\right)$, s is adjacent to at most one $C M C$ of $G-S$

Summary

Lemma

If RR1-2-3 cannot be applied, then either (G, k) is a NO-instance or the set of vertices in CMCs of $G-S$ has size $O\left(k^{3}\right)$.

- We know there is at most $|S|$ of components
- Each has size at most $O\left(k^{2}\right)$

Triangle Free Components

Removing triangles

Claim

There exists a set S^{\prime} of size $O\left(k^{2}\right)$ such that no vertex of TFC of $G-\left(S^{\prime} \cup S\right)$ belongs to a triangle.

First observation

Lemma
If $x \in G$ has $6 k+10$ neighbors in TFC of $G-S$ and A is a solution, then x is in a TFC of $G \Delta A$.

Suppose x belongs to some CMC C in $G \Delta A$.

- $4 k+10$ of the neighbors won't be adjacent to the solution
- They belong to at most two parts of C
- One part is bigger than $2 k+5$ and we can apply RR1

Kernel for deletion

Theorem
Paw-free deletion admits a $O\left(k^{3}\right)$ kernel.

- At most $O\left(k^{3}\right)$ vertices belongs to CMC of $G^{\prime}-S$.
- For every $s \in\left(S^{\prime} \cup S\right)$, mark $6 k+10$ vertices in TFC.
- Remove all the unmarked vertices.

The graph G^{\prime} induced by all the marked vertices is the kernel.

Proof

Claim

For any set A of less than k pairs, $G \Delta A$ is paw-free
 $G^{\prime} \Delta A$ is paw-free
$\Rightarrow G^{\prime}$ is a subgraph of G
\Leftarrow Suppose $G^{\prime} \Delta A$ is paw free, but $G \Delta A$ has a paw $x_{1} x_{2} x_{3}-x_{4}$

- The triangle $x_{1} x_{2} x_{3}$ is a triangle of G and thus G^{\prime}.
- Thus x_{4} is an unmarked vertex of some TFC.
- x_{3} is a vertex of $\left(S \cup S^{\prime}\right)$ with $6 k+10$ adjacent vertices.
- In $G^{\prime} \Delta A, x_{3}$ has to be in a $T F C$, a contradiction.

Edge-editing

- Marking $6 k+10$ vertices \rightarrow know which vertices of $\left(S \cup S^{\prime}\right)$ must belong to TFC in the solution.

Edge-editing

- Marking $6 k+10$ vertices \rightarrow know which vertices of $\left(S \cup S^{\prime}\right)$ must belong to TFC in the solution.
- In the modification problem, vertices in TFC of $G-\left(S \cup S^{\prime}\right)$ can end up in $C M C$ of $G \Delta A$.

Edge-editing

- Marking $6 k+10$ vertices \rightarrow know which vertices of $\left(S \cup S^{\prime}\right)$ must belong to TFC in the solution.
- In the modification problem, vertices in TFC of $G-\left(S \cup S^{\prime}\right)$ can end up in $C M C$ of $G \Delta A$.

Edge-editing

- Marking $6 k+10$ vertices \rightarrow know which vertices of $\left(S \cup S^{\prime}\right)$ must belong to TFC in the solution.
- In the modification problem, vertices in TFC of $G-\left(S \cup S^{\prime}\right)$ can end up in $C M C$ of $G \Delta A$.

Lemma
Let (G, k) be a YES instance, there exists a solution A s.t no $C M C$ of $G \Delta A$ contains a vertex at distance 5 from S in G.

Distance to S

- Let A be a solution minimizing the CMC of $D \Delta A$
- C_{1}, \ldots, C_{l} the parts of a CMC C of $G \Delta A$
- $C_{i, j}$ the set of vertices of C_{i} at distance j from S
- $\overline{C_{i, j}}=\bigcup_{t \neq i} C_{t, j}$

Proof

Lemma

For any $j>3, i \in[l]$, if $C_{i, 0} \cup C_{i, 1}$ is non empty, then $C_{i, j}$ is.
Suppose it is not:

- A must contain all the edges in $C_{i, j} \times\left(\overline{C_{i, 0}} \cup \overline{C_{i, 1}} \cup \overline{C_{i, 2}}\right)$
- Removing $C_{i, j}$ from C costs $\left|E\left(C_{i, j},\left(\overline{C_{i, j-1}} \cup \overline{C_{i, j}} \cup \overline{C_{i, j+1}}\right)\right)\right|$

Proof

Lemma

For any $j>3, i \in[l]$, if $C_{i, 0} \cup C_{i, 1}$ is non empty, then $C_{i, j}$ is.
Suppose it is not:

- A must contain all the edges in $C_{i, j} \times\left(\overline{C_{i, 0}} \cup \overline{C_{i, 1}} \cup \overline{C_{i, 2}}\right)$
- Removing $C_{i, j}$ from C costs $\left|E\left(C_{i, j},\left(\overline{C_{i, j-1}} \cup \overline{C_{i, j}} \cup \overline{C_{i, j+1}}\right)\right)\right|$
- This means $\left|\overline{C_{i, j-1}} \cup \overline{C_{i, j}} \cup \overline{C_{i, j+1}}\right| \geq\left|\overline{C_{i, 0}} \cup \overline{C_{i, 1}} \cup \overline{C_{i, 2}}\right|$

Proof

Lemma

For any $j>3, i \in[l]$, if $C_{i, 0} \cup C_{i, 1}$ is non empty, then $C_{i, j}$ is.
Suppose it is not:

- A must contain all the edges in $C_{i, j} \times\left(\overline{C_{i, 0}} \cup \overline{C_{i, 1}} \cup \overline{C_{i, 2}}\right)$
- Removing $C_{i, j}$ from C costs $\left|E\left(C_{i, j},\left(\overline{C_{i, j-1}} \cup \overline{C_{i, j}} \cup \overline{C_{i, j+1}}\right)\right)\right|$
- This means $\left|\overline{C_{i, j-1}} \cup \overline{C_{i, j}} \cup \overline{C_{i, j+1}}\right| \geq\left|\overline{C_{i, 0}} \cup \overline{C_{i, 1}} \cup \overline{C_{i, 2}}\right|$
- A must contain $\left(C_{i, 0} \cup C_{i, 1}\right) \times\left(\overline{C_{i, j-1}} \cup \overline{C_{i, j}} \cup \overline{C_{i, j+1}}\right)$
- Removing $\left(C_{i, 0} \cup C_{i, 1}\right)$ from C costs $\left(C_{i, 0} \cup C_{i, 1}\right) \times\left(\overline{C_{i, 0}} \cup \overline{C_{i, 1}} \cup \overline{C_{i, 2}}\right)$.

Contradiction to the minimality of $|C|$!

Proof

For any j, let $S_{j}=\bigcup_{i \in[r]} C_{i, j}$. Previous result implies that:
Lemma
If S_{i} non-empty for $i>3$, then $\left(S_{1} \cup S_{0}\right) \times S_{i} \subset A$.
Indeed S_{j} and $\left(S_{0} \cup S_{1}\right)$ belong to different parts of C.

Lemma
 If S_{5} is non empty, $\left|S_{4}\right| \geq\left|S_{1} \cup S_{0}\right|$

- S_{4} is not empty
- A contains $S_{5} \times\left(S_{0} \cup S_{1}\right)$
- Disconnecting S_{5} from C costs $\left|E_{G}\left(S_{4}, S_{5}\right)\right|$
- This means that $\left|S_{4}\right|\left|S_{5}\right| \geq\left|E_{G}\left(S_{4}, S_{5}\right)\right| \geq\left|S_{5}\right|\left|S_{1} \cup S_{0}\right|$

Proof

Lemma

S_{j} is empty for $j \geq 5$

- S_{4} is not empty
- A contains $S_{4} \times\left(S_{0} \cup S_{1}\right)$
- Disconnecting S_{1} from S_{0} costs less than $\left|S_{1} \cup S_{0}\right|^{2}$
- Previous lemma $\Rightarrow\left|S_{4}\right|\left|S_{1} \cup S_{0}\right| \geq\left|S_{1} \cup S_{0}\right|^{2}$

Therefore the solution A^{\prime} obtained from A by disconnecting S_{1} from S_{0} and removing all the pairs of A of the form (x, y) with $x \in S_{0}, y \in S_{j}$ for $i \geq 0$ and $j \geq 1$ is a better solution.

Proof

Lemma

S_{j} is empty for $j \geq 5$

- S_{4} is not empty
- A contains $S_{4} \times\left(S_{0} \cup S_{1}\right)$
- Disconnecting S_{1} from S_{0} costs less than $\left|S_{1} \cup S_{0}\right|^{2}$
- Previous lemma $\Rightarrow\left|S_{4}\right|\left|S_{1} \cup S_{0}\right| \geq\left|S_{1} \cup S_{0}\right|^{2}$

Therefore the solution A^{\prime} obtained from A by disconnecting S_{1} from S_{0} and removing all the pairs of A of the form (x, y) with $x \in S_{0}, y \in S_{j}$ for $i \geq 0$ and $j \geq 1$ is a better solution.

Lemma

Let (G, k) be a YES instance, there exists a solution A s.t no $C M C$ of $G \Delta A$ contains a vertex at distance 5 from S in G.

Thank you!

