Polynomial Kernels for Paw-free Edge Modification Problems

Yixin Cao, Yuping Ke, Hanchun Yuan

The Hong Kong Polytechnic University

Workshop on Graph Modification, Bergen

H	completion	deletion	editing
K_4	trivial	$O(k^3)$	$O(k^3)$ [Dekel Tsur 2019]
P_4	$O(k^3)$	$O(k^3)$	$O(k^3)$ [Sylvain Guillemot et al. 2013]
diamond	trivial	$O(k^3)$	$O(k^8)$ [Yixin Cao et al. 2018]
paw	O(k)	$O(k^4)$ [this graph]	$O(k^6)$ [next talk]
claw	unknown	unknown	unknown
C_4	no	no	<i>no</i> [Sylvain Guillemot et al. 2013]

Paw-free completion

Input: A graph G, an integer k. *Task*: An edge set E_+ of size at most k such that $G + E_+$ is a paw-free graph.

Our result: A <u>38k</u>-vertex kernel

Paw-free deletion

Input: A graph G, an integer k. *Task*: An edge set E_{-} of size at most k such that $G - E_{-}$ is a paw-free graph.

Our result: An $O(k^4)$ -vertex kernel

Paw-free Completion

Proposition [Stephan Olariu 1988]

A graph G is paw-free iff every component of G is triangle-free or complete multipartite.

Proposition [Stephan Olariu 1988]

A graph G is paw iff every component of G is triangle-free or complete multipartite.

• Produce a modulator M, where $|M| \leq 4k$.

 ${\it M}$ is a modulator of ${\it G}$ if every paw of ${\it G}$ intersects ${\it M}$ by at least two vertices

• Produce a modulator M, where $|M| \leq 4k$.

• G - M is paw-free, every component of G - M is \triangle -free or complete multipartite.

• Produce a modulator M, where $|M| \leq 4k$.

• G - M is paw-free, every component of G - M is \triangle -free or complete multipartite.

The number of vertices in △-free components of G – M is O(k).
A triangle-free component of G – M is of type I if it forms a triangle with a vertex in M, or type II otherwise

• Produce a modulator M, where $|M| \leq 4k$.

• G - M is paw-free, every component of G - M is \triangle -free or complete multipartite.

• The number of vertices in \triangle -free components of G - M is O(k).

• The number of vertices in complete multipartite components of G - M is O(k).

Let M be a modulator of G, and C a \triangle -free component of G - M.

Proposition

If $v \in M$ forms a triangle with an edge in C, then

Let M be a modulator of G, and C a \triangle -free component of G - M.

Proposition

If $v \in M$ forms a triangle with an edge in C, then

Let M be a modulator of G, and C a \triangle -free component of G - M.

Proposition

If $v \in M$ forms a triangle with an edge in C, then

Let M be a modulator of G, and C a \triangle -free component of G - M.

Proposition

If $v \in M$ forms a triangle with an edge in C, then

Let M be a modulator of G, and C a \triangle -free component of G - M.

Proposition

If $v \in M$ forms a triangle with an edge in C, then

- (i) v is adjacent to all the vertices of C;
- (ii) C is complete bipartite.

Every type I \triangle -free component is complete bipartite.

Proposition

M is a modulator of G. If a vertex $v \in M$ adjacent to a multipartite component C of G - M, then $C \cap \overline{N(v)}$ is either empty or precisely one part of C.

Multipartite components

Proposition

M is a modulator of G. If a vertex $v \in M$ adjacent to a multipartite component C of G - M, then $C \cap \overline{N(v)}$ is either empty or precisely one part of C.

Proposition

M is a modulator of G. If a vertex $v \in M$ adjacent to a multipartite component C of G - M, then $C \cap \overline{N(v)}$ is either empty or precisely one part of C.

Proposition

M is a modulator of G. If a vertex $v \in M$ adjacent to a multipartite component C of G - M, then $C \cap \overline{N(v)}$ is either empty or precisely one part of C.

Each part of C is a false twin class of G

Trivial components

Let G be a connected graph containing a paw and uv an edge in G. We need to add at least $|V(G) \setminus N[\{u, v\}]|$ edges incident to u or v to G to make it paw-free.

Trivial components

Trivial components

At most 2k such trivial components of G-M

Every other isolated vertex in G-M dominating all edges in G^\prime

Construction of the modulator M

1. each paw F in G, if $|F \cap F'| \leq 1$ for each paw F' in M

Construction of the modulator M

1. each paw F in G, if $|F\cap F'|\leq 1$ for each paw F' in M

add all vertices of F to M

Modulator

Construction of the modulator M

1. each paw F in G, if $|F \cap F'| \leq 1$ for each paw F' in M

add all vertices of F to M

Modulator

Construction of the modulator M

1. each paw F in G, if $|F \cap F'| \leq 1$ for each paw F' in M

add all vertices of F to M

Modulator

Construction of the modulator M

2. if $|F \cap F'| > 1$
Construction of the modulator M

2. if $|F \cap F'| > 1$

Construction of the modulator M

2. if $|F \cap F'| > 1$

add the degree-one vertex of ${\it F}$ to ${\it M}$

Construction of the modulator M

3. if an isolated vertex v of G - M dominates all edges in G'

Construction of the modulator M

trivial components

3. if an isolated vertex v of G - M dominates all edges in G'

find an edge uw in G[N(v)]

Construction of the modulator M

3. if an isolated vertex v of G - M dominates all edges in G'

find an edge uw in G[N(v)]

remove \underline{u} from M

free component

Construction of the modulator M

all such trivial components become a type 1 \bigtriangleup free component

free component

- 1. M is a modulator
- 2. $|M| \le 4k$
- 3. For each component G' of G, we need to add $\geq |M \cap G'|/4$ edges.
- 4. All trivial components are considered

each vertex in a type II \bigtriangleup -free component of G-M cannot be in a triangle

each vertex in a type II \triangle -free component of G-M is incident to ≥ 1 edge in a solution

Type II triangle-free components

At most k vertices in type II \triangle -free components

Then we consider the components of G one by one

Let G' be a component of G and $M' = M \cap V(G')$

Then we consider the components of G one by one

Let G' be a component of G and $M' = M \cap V(G')$

Then we consider the components of G one by one

Let G' be a component of G and $M' = M \cap V(G')$

To bound $|V(G')\setminus M'|$

To show the minimum number of edges we need to add to G' is linear on $|V(G') \setminus M'|$

If two components in G'-M' are not type II riangle-free components

If two components in G'-M' are not type II \triangle -free components

the number of edges we need to add is at least

 $|V(G') \setminus (M' \cup X)| + |V(G') \setminus (M' \cup Y)| - 2 \geq |V(G') \setminus M'|/2$

G'-M' has precisely one type I \triangle -free component or one complete multipartite component

Type I triangle-free component

Let C be a type 1 \bigtriangleup -free component of $G'-M',\,L\uplus R$ the bipartition of C with $|L|\ge |R|$

If any of the following conditions is satisfied, then we need to add at least |C|/32 edges to G'.

If any of the following conditions is satisfied, then we need to add at least |C|/32 edges to G'. (i) $|L| \le 4|M'|$;

If any of the following conditions is satisfied, then we need to add at least |C|/32 edges to G'. (i) $|L| \le 4|M'|$; (ii) there is an edge in G' - N[L];

If any of the following conditions is satisfied, then we need to add at least |C|/32 edges to G'. (i) $|L| \le 4|M'|$; (ii) there is an edge in G' - N[L];

add at least $|L| \ge |C|/2$ edges

If any of the following conditions is satisfied, then we need to add at least |C|/32 edges to G'. (i) $|L| \le 4|M'|$; (ii) there is an edge in G' - N[L]; (iii) $V(G') \ne N[C]$ and $|L| \le 2|R|$;

If any of the following conditions is satisfied, then we need to add at least |C|/32 edges to G'. (i) $|L| \le 4|M'|$; (ii) there is an edge in G' - N[L]; (iii) $V(G') \ne N[C]$ and $|L| \le 2|R|$;

If any of the following conditions is satisfied, then we need to add at least |C|/32 edges to G'. (i) $|L| \le 4|M'|$; (ii) there is an edge in G' - N[L]; (iii) $V(G') \ne N[C]$ and $|L| \le 2|R|$;

add at least $|R| \ge |C|/3$ edges

If any of the following conditions is satisfied, then we need to add at least |C|/32 edges to G'. (i) $|L| \le 4|M'|$;

(ii) there is an edge in G' - N[L];

(iii) $V(G') \neq N[C]$ and $|L| \leq 2|R|$;

(iv) $\geq |L|/2$ missing edges between L and N(L);

add at least $|L|/2 \ge |C|/4$ edges

If any of the following conditions is satisfied, then we need to add at least |C|/32 edges to G'. (i) |L| < 4|M'|; (ii) there is an edge in G' - N[L]; (iii) $V(G') \neq N[C]$ and $|L| \leq 2|R|$; (iv) > |L|/2 missing edges between L and N(L): (v) $|L| \leq |R| + |M'|$ and G - N[R] has an edge;

add at least |C|/3 edges

If any of the following conditions is satisfied, then we need to add at least |C|/32 edges to G'.

(i) $|L| \le 4|M'|;$

```
(ii) there is an edge in G' - N[L];
```

- (iii) $V(G') \neq N[C]$ and $|L| \leq 2|R|$;
- (iv) $\geq |L|/2$ missing edges between L and N(L);
- (v) $|L| \leq |R| + |M'|$ and G N[R] has an edge;

```
(vi) |L| \leq |R| + |M'| and \geq |R|/2 missing edges between R and N(R)
```


add at least |C|/6 edges

Rule. If none of the conditions holds true,

 $V(G') \setminus N[L]$ is an independent set

Rule. If none of the conditions holds true,

add all the missing edges between L and N(L); add all the missing edges between $V(G') \setminus N[L]$ and N(L); Rule. If none of the conditions holds true,

add all the missing edges between L and N(L); add all the missing edges between $V(G') \setminus N[L]$ and N(L); remove all but one vertex from $(V(G') \setminus N[L]) \cup L$. at most 32k vertices in type I riangle-free components of G-M

Complete multipartite component

Let C be a complete multipartite component of G' - M', P^* a largest part of C.

•	٠	٠	\cdots
		•	
•	•	•	
•	•	•	

If any of the following conditions is satisfied, then we need to add at least |C|/12 edges to G'. (i) $|C| \leq 3|M'|$; (ii) there is an edge in G' - N[C];

add at least |C| edges

If any of the following conditions is satisfied, then we need to add at least |C|/12 edges to G'. (i) $|C| \leq 3|M'|$; (ii) there is an edge in G' - N[C]; (iii) $|P^*| > 2|C|/3$ and $G' - N[P^*]$ has an edge;

add at least 2|C|/3 edges

If any of the following conditions is satisfied, then we need to add at least |C|/12 edges to G'. (i) $|C| \leq 3|M'|$; (ii) there is an edge in G' - N[C]; (iii) $|P^*| > 2|C|/3$ and $G' - N[P^*]$ has an edge;

(iv) $|P^*| \le 2|C|/3$ and $V(G') \ne N[C]$;

add at least |C|/3 edges

If any of the following conditions is satisfied, then we need to add at least |C|/12 edges to G'. (i) |C| < 3|M'|; (ii) there is an edge in G' - N[C]; (iii) $|P^*| > 2|C|/3$ and $G' - N[P^*]$ has an edge; (iv) $|P^*| \leq 2|C|/3$ and $V(G') \neq N[C]$; (v) $|P^*| < 2|C|/3$ and V(G') = N[C], for every P. **1** G' - N[P] contains an edge, or $2 \geq |P|$ missing edges between $V(G') \setminus N[P]$ and N(P).

Rule. If none of the conditions holds true, then

1. if $|P^*| > 2|C|/3$, add missing edges between $V(G') \setminus N[P^*]$ and $N(P^*)$, remove $(V(G') \setminus N[P^*]) \cup P^*$;

2. find a P, add missing edges between $V(G')\setminus N[P]$ and N(P), remove $(V(G')\setminus N[P])\cup P$

at most 12k vertices in complete multipartite components of ${\cal G}-{\cal M}$

Theorem

The paw-free completion problem has a 38k-vertex kernel.

Thanks!