Polynomial Kernels for Paw-free Edge Modification Problems

Yixin Cao, Yuping Ke, Hanchun Yuan

The Hong Kong Polytechnic University

Workshop on Graph Modification, Bergen

Graphs on four vertices

H	completion	deletion	editing
K_{4}	trivial	$O\left(k^{3}\right)$	$O\left(k^{3}\right)$ [Dekel Tsur 2019]
P_{4}	$O\left(k^{3}\right)$	$O\left(k^{3}\right)$	$O\left(k^{3}\right)$ [Sylvain Guillemot et al. 2013]
diamond	trivial	$O\left(k^{3}\right)$	$O\left(k^{8}\right)$ [Yixin Cao et al. 2018]
paw	$O(k)$	$O\left(k^{4}\right)$ [this graph]	$O\left(k^{6}\right)$ [next talk]
claw	unknown	unknown	unknown
C_{4}	no	no	no [Sylvain Guillemot et al. 2013]

Paw-free completion

Input: A graph G, an integer k.
Task: An edge set E_{+}of size at most k such that $G+E_{+}$is a paw-free graph.

Our result: A $38 k$-vertex kernel

Paw-free deletion

Input: A graph G, an integer k.
Task: An edge set E_{-}of size at most k such that $G-E_{-}$is a paw-free graph.

Our result: An $O\left(k^{4}\right)$-vertex kernel

Paw-free Completion

Proposition [Stephan Olariu 1988]

A graph G is paw-free iff every component of G is triangle-free or complete multipartite.

Paw-free graphs

Proposition [Stephan Olariu 1988]

A graph G is paw iff every component of G is triangle-free or complete multipartite.

complete multipartite

- Produce a modulator M, where $|M| \leq 4 k$.
M is a modulator of G if every paw of G intersects M by at least two vertices
- Produce a modulator M, where $|M| \leq 4 k$.
- $G-M$ is paw-free, every component of $G-M$ is \triangle-free or complete multipartite.
- Produce a modulator M, where $|M| \leq 4 k$.
- $G-M$ is paw-free, every component of $G-M$ is \triangle-free or complete multipartite.
- The number of vertices in \triangle-free components of $G-M$ is $O(k)$. A triangle-free component of $G-M$ is of type I if it forms a triangle with a vertex in M, or type II otherwise
- Produce a modulator M, where $|M| \leq 4 k$.
- $G-M$ is paw-free, every component of $G-M$ is \triangle-free or complete multipartite.
- The number of vertices in \triangle-free components of $G-M$ is $O(k)$.
- The number of vertices in complete multipartite components of $G-M$ is $O(k)$.

Let M be a modulator of G, and C a \triangle-free component of $G-M$.

Proposition

If $v \in M$ forms a triangle with an edge in C, then
(i) v is adjacent to all the vertices of C;

Let M be a modulator of G, and C a \triangle-free component of $G-M$.

Proposition

If $v \in M$ forms a triangle with an edge in C, then
(i) v is adjacent to all the vertices of C;

Let M be a modulator of G, and C a \triangle-free component of $G-M$.

Proposition

If $v \in M$ forms a triangle with an edge in C, then
(i) v is adjacent to all the vertices of C;

Let M be a modulator of G, and C a \triangle-free component of $G-M$.

Proposition

If $v \in M$ forms a triangle with an edge in C, then
(i) v is adjacent to all the vertices of C;

Let M be a modulator of G, and C a \triangle-free component of $G-M$.

$\longrightarrow C$ is $\left\{K_{3}, \overline{P_{3}}\right\}$-free

Proposition

If $v \in M$ forms a triangle with an edge in C, then
(i) v is adjacent to all the vertices of C;
(ii) C is complete bipartite.

Every type I \triangle-free component is complete bipartite.

Proposition
M is a modulator of G. If a vertex $v \in M$ adjacent to a multipartite component C of $G-M$, then $C \cap N(v)$ is either empty or precisely one part of C.

Proposition

M is a modulator of G. If a vertex $v \in M$ adjacent to a multipartite component C of $G-M$, then $C \cap \overline{N(v)}$ is either empty or precisely one part of C.

Proposition

M is a modulator of G. If a vertex $v \in M$ adjacent to a multipartite component C of $G-M$, then $C \cap \overline{N(v)}$ is either empty or precisely one part of C.

Proposition
M is a modulator of G. If a vertex $v \in M$ adjacent to a multipartite component C of $G-M$, then $C \cap N(v)$ is either empty or precisely one part of C.

Each part of C is a false twin class of G

Let G be a connected graph containing a paw and $u v$ an edge in G. We need to add at least $|V(G) \backslash N[\{u, v\}]|$ edges incident to u or v to G to make it paw-free.

$$
X=V(G) \backslash N[\{u, v\}]
$$

Trivial components

Trivial components

Trivial components

Trivial components

At most $2 k$ such trivial components of $G-M$

At most $2 k$ such trivial components of $G-M$

Every other isolated vertex in $G-M$ dominating all edges in G^{\prime}

Construction of the modulator M

1. each paw F in G , if $\left|F \cap F^{\prime}\right| \leq 1$ for each paw F^{\prime} in M

Construction of the modulator M

1. each paw F in G, if $\left|F \cap F^{\prime}\right| \leq 1$ for each paw F^{\prime} in M
add all vertices of F to M

Construction of the modulator M

1. each paw F in G, if $\left|F \cap F^{\prime}\right| \leq 1$ for each paw F^{\prime} in M
add all vertices of F to M

Construction of the modulator M

1. each paw F in G, if $\left|F \cap F^{\prime}\right| \leq 1$ for each paw F^{\prime} in M
add all vertices of F to M

Construction of the modulator M

2. if $\left|F \cap F^{\prime}\right|>1$

Construction of the modulator M

2. if $\left|F \cap F^{\prime}\right|>1$

Construction of the modulator M

2. if $\left|F \cap F^{\prime}\right|>1$
add the degree-one vertex of F to M

Construction of the modulator M

3. if an isolated vertex v of $G-M$ dominates all edges in G^{\prime}

Construction of the modulator M

3. if an isolated vertex v of $G-M$ dominates all edges in G^{\prime}
find an edge $u w$ in $G[N(v)]$

```
trivial components
```


Construction of the modulator M

3. if an isolated vertex v of $G-M$ dominates all edges in G^{\prime}
find an edge $u w$ in $G[N(v)]$
remove u from M
type I \triangle-free component

Construction of the modulator M

all such trivial components become a type I \triangle free component

[^0]1. M is a modulator
2. $|M| \leq 4 k$
3. For each component G^{\prime} of G, we need to add $\geq\left|M \cap G^{\prime}\right| / 4$ edges.
4. All trivial components are considered

each vertex in a type II \triangle-free component of $G-M$ cannot be in a triangle

each vertex in a type II \triangle-free component of $G-M$ is incident to ≥ 1 edge in a solution

Type II triangle-free components

At most k vertices in type iI \triangle-free components

Then we consider the components of G one by one

Let G^{\prime} be a component of G and $M^{\prime}=M \cap V\left(G^{\prime}\right)$

Then we consider the components of G one by one

Let G^{\prime} be a component of G and $M^{\prime}=M \cap V\left(G^{\prime}\right)$

To bound $\left|V\left(G^{\prime}\right) \backslash M^{\prime}\right|$

Then we consider the components of G one by one

Let G^{\prime} be a component of G and $M^{\prime}=M \cap V\left(G^{\prime}\right)$

To bound $\left|V\left(G^{\prime}\right) \backslash M^{\prime}\right|$
To show the minimum number of edges we need to add to G^{\prime} is linear on $\left|V\left(G^{\prime}\right) \backslash M^{\prime}\right|$

If two components in $G^{\prime}-M^{\prime}$ are not type II \triangle-free components

If two components in $G^{\prime}-M^{\prime}$ are not type II \triangle-free components

the number of edges we need to add is at least

$$
\left|V\left(G^{\prime}\right) \backslash\left(M^{\prime} \cup X\right)\right|+\left|V\left(G^{\prime}\right) \backslash\left(M^{\prime} \cup Y\right)\right|-2 \geq\left|V\left(G^{\prime}\right) \backslash M^{\prime}\right| / 2
$$

$G^{\prime}-M^{\prime}$ has precisely one type I \triangle-free component or one complete multipartite component

Type I triangle-free component
Let C be a type I \triangle-free component of $G^{\prime}-M^{\prime}, L \uplus R$ the bipartition of C with $|L| \geq|R|$

Type I triangle-free component

Lemma

If any of the following conditions is satisfied, then we need to add at least $|C| / 32$ edges to G^{\prime}.

Type I triangle-free component

Lemma

If any of the following conditions is satisfied, then we need to add at least $|C| / 32$ edges to G^{\prime}.
(i) $|L| \leq 4\left|M^{\prime}\right|$;

Type I triangle-free component

Lemma

If any of the following conditions is satisfied, then we need to add at least $|C| / 32$ edges to G^{\prime}.
(i) $|L| \leq 4\left|M^{\prime}\right|$;
(ii) there is an edge in $G^{\prime}-N[L]$;

Lemma

If any of the following conditions is satisfied, then we need to add at least $|C| / 32$ edges to G^{\prime}.
(i) $|L| \leq 4\left|M^{\prime}\right|$;
(ii) there is an edge in $G^{\prime}-N[L]$;

Type I triangle-free component

Lemma

If any of the following conditions is satisfied, then we need to add at least $|C| / 32$ edges to G^{\prime}.
(i) $|L| \leq 4\left|M^{\prime}\right|$;
(ii) there is an edge in $G^{\prime}-N[L]$;
(iii) $V\left(G^{\prime}\right) \neq N[C]$ and $|L| \leq 2|R|$;

Type I triangle-free component

Lemma

If any of the following conditions is satisfied, then we need to add at least $|C| / 32$ edges to G^{\prime}.
(i) $|L| \leq 4\left|M^{\prime}\right|$;
(ii) there is an edge in $G^{\prime}-N[L]$;
(iii) $V\left(G^{\prime}\right) \neq N[C]$ and $|L| \leq 2|R|$;

Lemma

If any of the following conditions is satisfied, then we need to add at least $|C| / 32$ edges to G^{\prime}.
(i) $|L| \leq 4\left|M^{\prime}\right|$;
(ii) there is an edge in $G^{\prime}-N[L]$;
(iii) $V\left(G^{\prime}\right) \neq N[C]$ and $|L| \leq 2|R|$;

Lemma

If any of the following conditions is satisfied, then we need to add at least $|C| / 32$ edges to G^{\prime}.
(i) $|L| \leq 4\left|M^{\prime}\right|$;
(ii) there is an edge in $G^{\prime}-N[L]$;
(iii) $V\left(G^{\prime}\right) \neq N[C]$ and $|L| \leq 2|R|$;
(iv) $\geq|L| / 2$ missing edges between L and $N(L)$;

$$
\text { add at least }|L| / 2 \geq|C| / 4 \text { edges }
$$

Lemma

If any of the following conditions is satisfied, then we need to add at least $|C| / 32$ edges to G^{\prime}.
(i) $|L| \leq 4\left|M^{\prime}\right|$;
(ii) there is an edge in $G^{\prime}-N[L]$;
(iii) $V\left(G^{\prime}\right) \neq N[C]$ and $|L| \leq 2|R|$;
(iv) $\geq|L| / 2$ missing edges between L and $N(L)$;
(v) $|L| \leq|R|+\left|M^{\prime}\right|$ and $G-N[R]$ has an edge;

add at least $|C| / 3$ edges

Lemma

If any of the following conditions is satisfied, then we need to add at least $|C| / 32$ edges to G^{\prime}.
(i) $|L| \leq 4\left|M^{\prime}\right|$;
(ii) there is an edge in $G^{\prime}-N[L]$;
(iii) $V\left(G^{\prime}\right) \neq N[C]$ and $|L| \leq 2|R|$;
(iv) $\geq|L| / 2$ missing edges between L and $N(L)$;
(v) $|L| \leq|R|+\left|M^{\prime}\right|$ and $G-N[R]$ has an edge;

(vi) $|L| \leq|R|+\left|M^{\prime}\right|$ and $\geq|R| / 2$ missing edges between R and $N(R)$

Rule. If none of the conditions holds true,

$$
V\left(G^{\prime}\right) \backslash N[L] \text { is an independent set }
$$

Rule. If none of the conditions holds true,

add all the missing edges between L and $N(L)$; add all the missing edges between $V\left(G^{\prime}\right) \backslash N[L]$ and $N(L)$;

Rule. If none of the conditions holds true,

add all the missing edges between L and $N(L)$; add all the missing edges between $V\left(G^{\prime}\right) \backslash N[L]$ and $N(L)$; remove all but one vertex from $\left(V\left(G^{\prime}\right) \backslash N[L]\right) \cup L$.

Type I triangle-free component
at most $32 k$ vertices in type I \triangle-free components of $G-M$

Complete multipartite component

Let C be a complete multipartite component of $G^{\prime}-M^{\prime}, P^{*}$ a largest part of C.

Complete multipartite component

Lemma

If any of the following conditions is satisfied, then we need to add at least $|C| / 12$ edges to G^{\prime}.
(i) $|C| \leq 3\left|M^{\prime}\right|$;
(ii) there is an edge in $G^{\prime}-N[C]$;

Complete multipartite component

Lemma

If any of the following conditions is satisfied, then we need to add at least $|C| / 12$ edges to G^{\prime}.
(i) $|C| \leq 3\left|M^{\prime}\right|$;
(ii) there is an edge in $G^{\prime}-N[C]$;
(iii) $\left|P^{*}\right|>2|C| / 3$ and $G^{\prime}-N\left[P^{*}\right]$ has an edge;

add at least $2|C| / 3$ edges

Lemma

If any of the following conditions is satisfied, then we need to add at least $|C| / 12$ edges to G^{\prime}.
(i) $|C| \leq 3\left|M^{\prime}\right|$;
(ii) there is an edge in $G^{\prime}-N[C]$;
(iii) $\left|P^{*}\right|>2|C| / 3$ and $G^{\prime}-N\left[P^{*}\right]$ has an edge;
(iv) $\left|P^{*}\right| \leq 2|C| / 3$ and $V\left(G^{\prime}\right) \neq N[C]$;

add at least $|C| / 3$ edges

Lemma

If any of the following conditions is satisfied, then we need to add at least $|C| / 12$ edges to G^{\prime}.
(i) $|C| \leq 3\left|M^{\prime}\right|$;
(ii) there is an edge in $G^{\prime}-N[C]$;
(iii) $\left|P^{*}\right|>2|C| / 3$ and $G^{\prime}-N\left[P^{*}\right]$ has an edge;
(iv) $\left|P^{*}\right| \leq 2|C| / 3$ and $V\left(G^{\prime}\right) \neq N[C]$;
(v) $\left|P^{*}\right| \leq 2|C| / 3$ and $V\left(G^{\prime}\right)=N[C]$, for every P,
(1) $G^{\prime}-N[P]$ contains an edge, or
(2) $\geq|P|$ missing edges between $V\left(G^{\prime}\right) \backslash N[P]$ and $N(P)$.

Rule. If none of the conditions holds true, then

1. if $\left|P^{*}\right|>2|C| / 3$, add missing edges between $V\left(G^{\prime}\right) \backslash$ $N\left[P^{*}\right]$ and $N\left(P^{*}\right)$, remove $\left(V\left(G^{\prime}\right) \backslash N\left[P^{*}\right]\right) \cup P^{*}$;
2. find a P, add missing edges between $V\left(G^{\prime}\right) \backslash N[P]$ and $N(P)$, remove $\left(V\left(G^{\prime}\right) \backslash N[P]\right) \cup P$

$$
\begin{aligned}
& \text { at most } 12 k \text { vertices in complete multipartite components of } \\
& G-M
\end{aligned}
$$

Theorem
The paw-free completion problem has a $38 k$-vertex kernel.

Thanks!

[^0]: type I \triangle-free component

