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Structural Rounding

Edit: Use ϕ to edit G to be in Cλ. A problem is stable wrt ϕ with
constant c ′ if OPT(G ′) < OPT(G ) + c ′ · d for any d-editable G ′.

Solve: Run an exact or approximate algorithm on the edited
instance in polynomial time.

Lift: Extend solution on G ′ to G . A problem can be structurally
lifted wrt ϕ with constant c if given any d-editable graph G ′, and
an ϕ-edit sequence of size k < d , a solution S ′ on G ′ can be
converted in poly-time to a solution S on G with
cost(S) < cost(S ′) + ck .

Theorem (Demaine et al, 2019)
Let π be a problem that is stable under ϕ with constant c ′ and that can be structurally
lifted wrt ϕ with constant c. If π has a polynomial-time ρ(λ)-approximation algorithm
in the graph class Cλ, and (Cλ, ϕ)-Edit has a polynomial-time (α, β)-approximation
algorithm, then there is a polynomial-time ((1 + c ′αδ) · ρ(βλ) + cαδ)-approximation
algorithm for π on graphs that are (δ · OPTπ(G))-close to Cλ.
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Structural Rounding Example

Initial graph G .



Structural Rounding Example: Edit

Edit G to have some nice property.
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Edit G to have some nice property.



Structural Rounding Example: Solve

Solve on the edited graph.



Structural Rounding Example: Lift

Lift the solution back to G .



Structural Rounding Example: Lift

Näıve Lifting Greedy Lifting
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Lift the solution back to G .



Structural Rounding Theorem

Theorem (Demaine et al, 2019)

Let π be a problem

I that is stable under ϕ with constant c ′ and

I that can be structurally lifted wrt ϕ with constant c .

If π has a poly-time ρ(λ)-approximation in Cλ and

(Cλ, ϕ)-Edit has a poly-time (α, β)-approximation, then

there is a poly-time ((1 + c ′αδ) · ρ(βλ) + cαδ)-approximation

for π on graphs that are (δ · OPTπ(G ))-close to Cλ.
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Vertex Cover in Near-Bipartite Graphs

Edit: VertexCover is stable wrt vertex deletion with c ′ = 0.
OddCycleTransversal has an O(

√
log n)-approximation

In
practice, we can find near optimal solutions using
independent set heuristics.

Solve: Hopcroft-Karp + König-Egerváry. 3

Lift: VertexCover can be structurally lifted wrt vertex deletion
with c = 1. Näıve approach just adds every edit to the solution.
Greedy approach does a bit better, but still feels wasteful.



Vertex Cover in Near-Bipartite Graphs

Edit: VertexCover is stable wrt vertex deletion with c ′ = 0.
OddCycleTransversal has an O(

√
log n)-approximation

In
practice, we can find near optimal solutions using
independent set heuristics.

Solve: Hopcroft-Karp + König-Egerváry.
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Better Lifting

Vertex Cover Lift
Input: Graph G = (V ,E ), an edit set D ⊆ V , and a vertex

cover C of G [V \D]
Question: What is the minimum size of a set L ⊆ V \ C such

that L ∪ C is a vertex cover of G?

algorithm 2apx oct-first bip-first

approx. ratio 2 2
1+p

1
p



Results

algorithm dfs standard sr-greedy sr-oct-first

runtime 4M 2.418 1.511 3.613 4.521



Editing Algorithms

Graph
Family Cλ

Edit Operation ϕ
Vertex Deletion Edge Deletion

Bounded
Degeneracy (r)

O(r log n)-approx.(
4m−βrn
m−rn , β

)
-approx.

(
1
ε ,

4
1−2ε

)
-approx. (ε < 1/2)

o(log(n/r))-inapprox.

O(r log n)-approx.

–(
1
ε ,

4
1−ε

)
-approx. (ε < 1)

o(log(n/r))-inapprox.

Bounded
Treewidth (w)

(O(log1.5 n), O(
√

logw))-approx.

o(log n)-inapprox. for w ∈ Ω(n1/2)

(O(log n log log n), O(logw))-approx.1

–

1Bansal et al, 2017



Thanks

Repo: github.com/TheoryInPractice/structural-rounding

I Erik D. Demaine

I Timothy D. Goodrich

I Kyle Kloster

I Quanquan C. Liu

I Hayley Russell

I Blair D. Sullivan

I Ali Vakilian

I Andrew van der Poel



We’re Hiring!

Looking for Ph.D. students and Postdocs with an interest in theory
in practice. Contact Blair Sullivan at sullivan@cs.utah.edu.



OCT Heuristic

re-sort no re-sort random bfs
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