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Theorem (Demaine et al, 2019)

Let 7 be a problem that is stable under ¢ with constant ¢’ and that can be structurally
lifted wrt ¢ with constant c. If ® has a polynomial-time p(\)-approximation algorithm
in the graph class Cx, and (Cy, ¢)-EDIT has a polynomial-time (., 3)-approximation
algorithm, then there is a polynomial-time ((1 + c’ad) - p(BA) + cad)-approximation
algorithm for w on graphs that are (0 - OPT(G))-close to Cj.
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Initial graph G.



Structural Rounding Example: Edit

Edit G to have some nice property.
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Solve on the edited graph.



Structural Rounding Example: Lift

Lift the solution back to G.



Structural Rounding Example: Lift

Naive Lifting Greedy Lifting

Lift the solution back to G.
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Vertex Cover in Near-Bipartite Graphs

Edit: VERTEXCOVER is stable wrt vertex deletion with ¢’ = 0.

ODDCYCLETRANSVERSAL has an -O{y/legn)-approximation In

practice, we can find near optimal solutions using
independent set heuristics.

Solve: Hopcroft-Karp + Konig-Egervary. v/

Lift: VERTEXCOVER can be structurally lifted wrt vertex deletion
with ¢ = 1. Naive approach just adds every edit to the solution.
Greedy approach does a bit better, but still feels wasteful.



Better Lifting

VERTEX COVER LIFT

Input: Graph G = (V,E), an edit set D C V/, and a vertex
cover C of G[V \ D]

Question: What is the minimum size of a set L C V' \ C such
that LU C is a vertex cover of G?

algorithm ‘ 2apx oct-first bip-first
approx. ratio ‘ 2 ﬁ %
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Editing Algorithms

Degeneracy (r)

(%, 17426)—appro><. (e<1/2)

o(log(n/r))-inapprox.

Graph Edit Operation ¢
Family Cy Vertex Deletion Edge Deletion
O(r log n)-approx. O(r log n)-approx.
4m—3
Bounded ( m_‘,;",/3>—approx. N

(%,ﬁ)—approx. (e<1)

o(log(n/r))-inapprox.

Bounded
Treewidth (w)

(O(log™® n), O(v/log w))-approx.

o(log n)-inapprox. for w € Q(n*/?)

(O(log nlog log n), O(log w))-approx.!

'Bansal et al, 2017
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Repo: github.com/TheoryInPractice/structural-rounding
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» Blair D. Sullivan
» Ali Vakilian

» Andrew van der Poel




We're Hiring!

Looking for Ph.D. students and Postdocs with an interest in theory
in practice. Contact Blair Sullivan at sullivan@cs.utah.edu.
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