Brian Lavallee

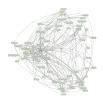
23 January 2020

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Real World Networks

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 三

Real World Networks



◆□ ▶ ◆圖 ▶ ◆臣 ▶ ◆臣 ▶

SAC

æ

Edit: Use φ to edit G to be in \mathcal{C}_{λ} . A problem is **stable** wrt φ with constant c' if $OPT(G') < OPT(G) + c' \cdot d$ for any d-editable G'.

Edit: Use φ to edit G to be in \mathcal{C}_{λ} . A problem is **stable** wrt φ with constant c' if $OPT(G') < OPT(G) + c' \cdot d$ for any d-editable G'.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Solve: Run an exact or approximate algorithm on the edited instance in polynomial time.

Edit: Use φ to edit G to be in \mathcal{C}_{λ} . A problem is **stable** wrt φ with constant c' if $OPT(G') < OPT(G) + c' \cdot d$ for any d-editable G'.

Solve: Run an exact or approximate algorithm on the edited instance in polynomial time.

Lift: Extend solution on G' to G. A problem can be structurally **lifted** wrt φ with constant c if given any d-editable graph G', and an φ -edit sequence of size k < d, a solution S' on G' can be converted in poly-time to a solution S on G with cost(S) < cost(S') + ck.

Edit: Use φ to edit G to be in \mathcal{C}_{λ} . A problem is **stable** wrt φ with constant c' if $OPT(G') < OPT(G) + c' \cdot d$ for any d-editable G'.

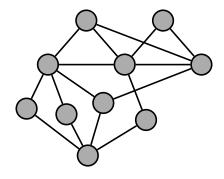
Solve: Run an exact or approximate algorithm on the edited instance in polynomial time.

Lift: Extend solution on G' to G. A problem can be structurally **lifted** wrt φ with constant c if given any d-editable graph G', and an φ -edit sequence of size k < d, a solution S' on G' can be converted in poly-time to a solution S on G with cost(S) < cost(S') + ck.

Theorem (Demaine et al, 2019)

Let π be a problem that is stable under φ with constant c' and that can be structurally lifted wrt φ with constant c. If π has a polynomial-time $\rho(\lambda)$ -approximation algorithm in the graph class C_{λ} , and (C_{λ}, φ) -EDIT has a polynomial-time (α, β) -approximation algorithm, then there is a polynomial-time $((1 + c'\alpha\delta) \cdot \rho(\beta\lambda) + c\alpha\delta)$ -approximation algorithm for π on graphs that are $(\delta \cdot \mathsf{OPT}_{\pi}(G))$ -close to C_{λ} .

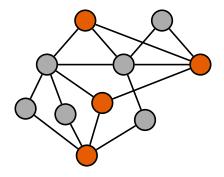
Structural Rounding Example



Initial graph G.

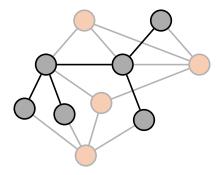
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Structural Rounding Example: Edit



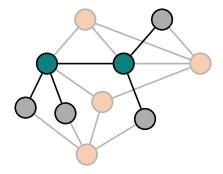
Edit *G* to have some nice property.

Structural Rounding Example: Edit



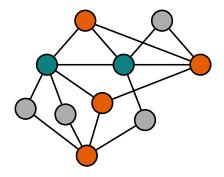
Edit *G* to have some nice property.

Structural Rounding Example: Solve



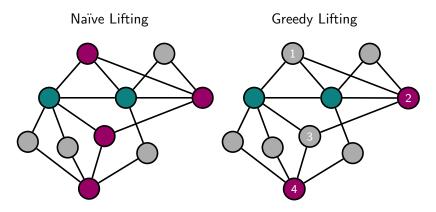
Solve on the edited graph.

Structural Rounding Example: Lift



Lift the solution back to G.

Structural Rounding Example: Lift



Lift the solution back to G.

Theorem (Demaine et al, 2019)

Let π be a problem

 \blacktriangleright that is stable under φ with constant c' and

• that can be structurally lifted wrt φ with constant c.

Theorem (Demaine et al, 2019)

Let π be a problem

that is stable under φ with constant c' and

• that can be structurally lifted wrt φ with constant c.

Theorem (Demaine et al, 2019)

Let π be a problem

that is stable under φ with constant c' and

that can be structurally lifted wrt φ with constant c.

Theorem (Demaine et al, 2019)

Let π be a problem

that is stable under φ with constant c' and

• that can be structurally lifted wrt φ with constant c.

Theorem (Demaine et al, 2019)

Let π be a problem

 \blacktriangleright that is stable under φ with constant c' and

Theorem (Demaine et al, 2019)

Let π be a problem

 \blacktriangleright that is stable under φ with constant c' and

• that can be structurally lifted wrt φ with constant c. If π has a poly-time $\rho(\lambda)$ -approximation in \mathcal{C}_{λ} and $(\mathcal{C}_{\lambda}, \varphi)$ -EDIT has a poly-time (α, β) -approximation, then there is a poly-time $((1 + c'\alpha\delta) \cdot \rho(\beta\lambda) + c\alpha\delta)$ -approximation for π on graphs that are $(\delta \cdot OPT_{\pi}(G))$ -close to \mathcal{C}_{λ} .

Theorem (Demaine et al, 2019)

Let π be a problem

 \blacktriangleright that is stable under φ with constant c' and

• that can be structurally lifted wrt φ with constant c. If π has a poly-time $\rho(\lambda)$ -approximation in \mathcal{C}_{λ} and $(\mathcal{C}_{\lambda}, \varphi)$ -EDIT has a poly-time (α, β) -approximation, then there is a poly-time $((1 + c'\alpha\delta) \cdot \rho(\beta\lambda) + c\alpha\delta)$ -approximation for π on graphs that are $(\delta \cdot OPT_{\pi}(G))$ -close to \mathcal{C}_{λ} .

Edit: VERTEXCOVER is stable wrt vertex deletion with c' = 0. ODDCYCLETRANSVERSAL has an $O(\sqrt{\log n})$ -approximation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Edit: VERTEXCOVER is stable wrt vertex deletion with c' = 0. ODDCYCLETRANSVERSAL has an $O(\sqrt{\log n})$ -approximation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Solve: Hopcroft-Karp + König-Egerváry.

Edit: VERTEXCOVER is stable wrt vertex deletion with c' = 0. ODDCYCLETRANSVERSAL has an $O(\sqrt{\log n})$ -approximation

Solve: Hopcroft-Karp + König-Egerváry.

Lift: VERTEXCOVER can be structurally lifted wrt vertex deletion with c = 1. Naïve approach just adds every edit to the solution.

- ロ ト - 4 回 ト - 4 □ - 4

Edit: VERTEXCOVER is stable wrt vertex deletion with c' = 0. ODDCYCLETRANSVERSAL has an $O(\sqrt{\log n})$ -approximation In practice, we can find near optimal solutions using independent set heuristics.

Solve: Hopcroft-Karp + König-Egerváry.

Lift: VERTEXCOVER can be structurally lifted wrt vertex deletion with c = 1. Naïve approach just adds every edit to the solution.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Edit: VERTEXCOVER is stable wrt vertex deletion with c' = 0. ODDCYCLETRANSVERSAL has an $O(\sqrt{\log n})$ -approximation In practice, we can find near optimal solutions using independent set heuristics.

Solve: Hopcroft-Karp + König-Egerváry.

Lift: VERTEXCOVER can be structurally lifted wrt vertex deletion with c = 1. Naïve approach just adds every edit to the solution.

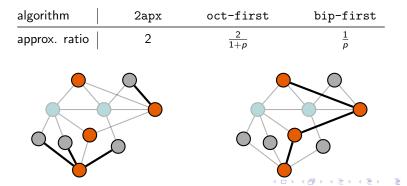
Edit: VERTEXCOVER is stable wrt vertex deletion with c' = 0. ODDCYCLETRANSVERSAL has an $O(\sqrt{\log n})$ -approximation In practice, we can find near optimal solutions using independent set heuristics.

Solve: Hopcroft-Karp + König-Egerváry.

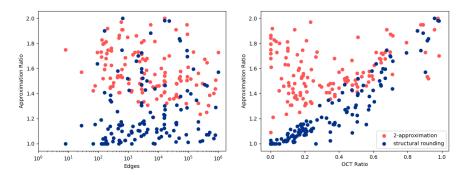
Lift: VERTEXCOVER can be structurally lifted wrt vertex deletion with c = 1. Naïve approach just adds every edit to the solution. **Greedy approach does a bit better, but still feels wasteful.**

Better Lifting

Vertex Cover Lift			
Input:	Graph $G = (V, E)$, an edit set $D \subseteq V$, and a vertex		
	cover C of $G[V \setminus D]$		
Question:	What is the minimum size of a set $L \subseteq V \setminus C$ such that $L \cup C$ is a vertex cover of <i>G</i> ?		



Results



algorithm	dfs	standard	sr-greedy	sr-oct-first
runtime 4M	2.418	1.511	3.613	4.521

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Editing Algorithms

Graph	Edit Operation φ			
Family C_{λ}	Vertex Deletion	Edge Deletion		
Bounded Degeneracy (r)	$O(r \log n)$ -approx.	$O(r \log n)$ -approx.		
	$\left(\frac{4m-\beta rn}{m-rn},\beta\right)$ -approx.	-		
	$\left(\frac{1}{\epsilon}, \frac{4}{1-2\epsilon}\right)$ -approx. ($\epsilon < 1/2$) $o(\log(n/r))$ -inapprox.	$\left(rac{1}{\epsilon},rac{4}{1-\epsilon} ight)$ -approx. ($\epsilon<1$) $o(\log(n/r))$ -inapprox.		
Bounded Treewidth (w)	$(O(\log^{1.5} n), O(\sqrt{\log w}))$ -approx. $o(\log n)$ -inapprox. for $w \in \Omega(n^{1/2})$	$(O(\log n \log \log n), O(\log w))$ -approx. ¹		

¹Bansal et al, 2017

Thanks

Repo: github.com/TheoryInPractice/structural-rounding

- Erik D. Demaine
- Timothy D. Goodrich
- Kyle Kloster
- Quanquan C. Liu

- Blair D. Sullivan
- Ali Vakilian
- Andrew van der Poel

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

We're Hiring!

Looking for Ph.D. students and Postdocs with an interest in theory in practice. Contact Blair Sullivan at sullivan@cs.utah.edu.

OCT Heuristic

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●