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Nevena Pivač, University of Primorska, Koper, Slovenia

Robert Scheffler, BTU Cottbus-Senftenberg, Germany

Martin Strehler, BTU Cottbus-Senftenberg, Germany



Background and motivation



Chordal Graphs

A graph G is chordal if every cycle in G of length at least four
has a chord.

Chordal graphs are well-known to possess many good
structural and algorithmic properties.



1965, Fulkerson and Gross:
I A graph G = (V ,E) is chordal if and only if it has a perfect

elimination ordering.

A linear ordering < of V such that
for all x < y < z:

xy ∈ E and xz ∈ E =⇒ yz ∈ E



1965, Fulkerson and Gross:
I A graph G = (V ,E) is chordal if and only if

it has a perfect elimination ordering.

Or, in terms of the adjacency matrix A of G:
for all x < y < z:

Ayz ≥ min{Axy ,Axz}



2017, Laurent and Tanigawa:
I extended to weighted graphs the notion of perfect

elimination ordering.

A perfect elimination ordering of an edge-weighted graph
G = (V ,E) given by a weighted adjacency matrix A:

a linear ordering < of V such that for all x < y < z:

Ayz ≥ min{Axy ,Axz}

This framework captures common vertex elimination orderings
of families of chordal graphs, Robinsonian matrices, and
ultrametrics.



A symmetric matrix A is a Robinsonian similarity if its rows
and columns can be (simultaneously) permuted so that
for all x < y < z:

Axz ≤ min{Axy ,Ayz}

Special case: adjacency matrices of unit interval graphs.

1969, Roberts:
I A graph G = (V ,E) is a unit interval graph if and only if

there is a linear ordering < of V such that
for all x < y < z:

xz ∈ E =⇒ xy ∈ E and yz ∈ E



Note: if

Axz ≤ min{Axy ,Ayz}

then

Ayz ≥ min{Axy ,Axz} .

Hence, every Robinsonian similarity has a perfect elimination
ordering.

Special case (adjacency matrices of graphs):

every unit interval ordering of a graph is also a perfect
elimination ordering.



Theorem (Laurent and Tanigawa, 2017)
The following conditions are equivalent for a weighted graph
(G,w):

1. (G,w) has a perfect elimination ordering.

2. There exists an ordering of the vertices that is a common
perfect elimination ordering of all level graphs.

A k -weighted graph is a pair (G,w) where G = (V ,E) is a
graph and w is a weight function E → {1, . . . , k}.

The i-th level graph of (G,w) is the graph (V ,Fi)
where Fi consists of edges of G of weight ≥ i .

In particular, if a weighted graph (G,w) has a perfect
elimination ordering, then all level graphs are chordal.



Example:

(G,w)
w(e) = 1

w(e) = 2

w(e) = 3

v1 v9

v6
v1

v2

v3v4

v7

v8

v9

v5



Example:

v1 v2 v3 v4 v5 v6 v7 v8 v9

w(e) = 1

w(e) = 2

w(e) = 3

v9

(G,w)

the 1st level graph



Example:

w(e) = 1

v1 v2 v3 v4 v5 v6 v7 v8 v9

w(e) = 1

w(e) = 2

w(e) = 3

v9

the 2nd level graph



Example:

w(e) = 1

v1 v2 v3 v4 v5 v6 v7 v8 v9

w(e) = 1

w(e) = 2

w(e) = 3

v9

the 3rd level graph



A new concept and main questions



We propose the following generalization.

G – a graph class (for example, the class of chordal graphs)

A weighted graph (G,w) is level-G if all its level graphs are in G.

This definition can be applied to any graph class G

(it is not limited to graph classes defined using elimination
orderings).



For example, every weighted graph with a perfect elimination
ordering is level-chordal.

But not vice versa:

(G,w)

w(e) = 1

w(e) = 2v1

v2

v3

v4

v5

This weighted graph is level-chordal.

However, every perfect elimination ordering of the 2nd level
graph starts with v1 or v5, neither of which can start a perfect
elimination ordering in G (= the 1st level graph).

=⇒ (G,w) does not have a perfect elimination ordering



For a given graph class G, the following are the
main questions of interest:

1. Can we efficiently recognize level-G weighted graphs?

Observation:
Level-G weighted graphs are recognizable in polynomial
time if and only if graphs in G are recognizable in
polynomial time.

A better question:
Can level-G weighted graphs be recognized in linear time?



2. A structural question that can help in this regard:

Can we delete edges from a given level-G weighted graph
one at a time, from lightest to heaviest, so that
all the intermediate graphs are in G?

We call such a sequence of edge deletions
a sorted G-safe edge elimination scheme.



Theorem
The following two conditions are equivalent for a graph class G:

1. Every level-G weighted graph has a sorted G-safe edge
elimination scheme.

2. G is gap monotone.

A graph class G is said to be gap monotone if for every two
graphs G = (V ,E) and G′ = (V ,E ∪ F ) in G, where E ∩ F = ∅,

graph G can be obtained from G′ by a sequence of edge
deletions such that all intermediate graphs are in G.

I Equivalently: if F 6= ∅, then ∃e ∈ F such that G′ − e ∈ G.



Two observations:

I monotone =⇒ gap monotone, but not vice versa
(monotone = closed under edge deletions)

I If a graph class is gap monotone, then so is its
complementary class.



Some gap monotone graph classes:

Forests

Bipartite planar

Bipartite Planar

Threshold

Split

Chordal Cochordal

Chordal: 1976, Rose, Tarjan, and Lueker,
1991, Bakonyi and Constantinescu

Threshold: 2009, Heggernes, Papadopoulos

Split: 2009, Heggernes, Mancini



Some gap monotone graph classes:

Forests

Bipartite planar

Bipartite Planar

Threshold

Split

Chordal Cochordal

Chordal: 1976, Rose, Tarjan, and Lueker,
1991, Bakonyi and Constantinescu

Split: 2009, Heggernes, Mancini

Threshold: 2009, Heggernes, Papadopoulos



Some gap monotone graph classes:

Forests

Bipartite

Chain Threshold

Split

Chordal Cochordal

Chordal bipartite

Strongly chordal

Threshold, chain: 2009, Heggernes, Papadopoulos

Chordal bipartite, strongly chordal:
2011, Heggernes, Mancini, Papadopoulos, Sritharan

(Heggernes, Mancini, Papadopoulos, and Sritharan refer to
the gap monotonicity property as sandwich monotonicity.)



Open question: Is the class of weakly chordal graphs gap
monotone?

Forests

Bipartite

Chain Threshold

Split

Chordal Cochordal

(?) Weakly chordal (?)

Chordal bipartite

Strongly chordal



Further motivation for gap monotonicity:

I The property allows for one graph in the class to be
dynamically changed to another one by successive edge
additions (or removals) so that all intermediate graphs are
in the class.

Thus, dynamic graph algorithms designed for changing
one edge at a time can be applied.

For example: in 2008, Ibarra gave fully dynamic algorithms
for chordal graphs and split graphs



Let us return to the main question:

Can level-G weighted graphs be recognized in linear time?

Theorem
The following two conditions are equivalent for a graph class G:

1. Every level-G weighted graph has a sorted G-safe edge
elimination scheme.

2. G is gap monotone.

Thus, if G is a gap monotone graph class, then the fact that a
weighted graph is level-G can be certified by a sorted G-safe
edge elimination scheme.



We show that the classes of

threshold graphs, split graphs, and chain graphs

admit particularly simple sorted G-safe edge elimination
schemes.



Two general concepts



Definition
Let G be a graph and let F be a set of edges of G.

A degree-minimal edge in F is an edge xy ∈ F such that:

1. vertex x has the smallest degree in G among all vertices
incident to an edge in F , and

2. the degree of y in G is the smallest among all neighbors of
x that are adjacent to x via an edge in F .

Example:

e ∈ S

v1

v2

v3

v4

v5

G



Definition
Let G be a graph and let F be a set of edges of G.

A degree-minimal edge in F is an edge xy ∈ F such that:

1. vertex x has the smallest degree in G among all vertices
incident to an edge in F , and

2. the degree of y in G is the smallest among all neighbors of
x that are adjacent to x via an edge in F .

Example:

e ∈ F

v1

v2

v3

v4

v5

G



Definition
Let G be a graph and let F be a set of edges of G.

A degree-minimal edge in F is an edge xy ∈ F such that:

1. vertex x has the smallest degree in G among all vertices
incident to an edge in F , and

2. the degree of y in G is the smallest among all neighbors of
x that are adjacent to x via an edge in F .

Example:

e ∈ F

v1

v2

v3

v4

v5

G
4

3 3



Definition
Let G be a graph and let F be a set of edges of G.

A degree-minimal edge in F is an edge xy ∈ F such that:

1. vertex x has the smallest degree in G among all vertices
incident to an edge in F , and

2. the degree of y in G is the smallest among all neighbors of
x that are adjacent to x via an edge in F .

Example:

e ∈ F

v1

v2

v3

v4

v5

G

3

4

3 3



Definition
Let (G,w) be a weighted graph.

A linear ordering τ = (e1, . . . ,em) of the edges of G is said to
be a degree-minimal edge elimination scheme (dmees) of
(G,w) if for every i ∈ {1, . . . ,m},

edge ei is a degree-minimal edge in the set of all
minimum-weight edges in the graph G − {e1, . . . ,ei−1}.

Example:

(G,w)

w(e) = 1

w(e) = 2v1

v2

v3

v4

v5



Definition
Let (G,w) be a weighted graph.

A linear ordering τ = (e1, . . . ,em) of the edges of G is said to
be a degree-minimal edge elimination scheme (dmees) of
(G,w) if for every i ∈ {1, . . . ,m},

edge ei is a degree-minimal edge in the set of all
minimum-weight edges in the graph G − {e1, . . . ,ei−1}.

Example:

(G,w)

w(e) = 1

w(e) = 2v1

v2

v3

v4

v5

4

3 3



Definition
Let (G,w) be a weighted graph.

A linear ordering τ = (e1, . . . ,em) of the edges of G is said to
be a degree-minimal edge elimination scheme (dmees) of
(G,w) if for every i ∈ {1, . . . ,m},

edge ei is a degree-minimal edge in the set of all
minimum-weight edges in the graph G − {e1, . . . ,ei−1}.

Example:

(G,w)

w(e) = 1

w(e) = 2

v2

v3

v4

v5

4

v1 3 3
e1



Definition
Let (G,w) be a weighted graph.

A linear ordering τ = (e1, . . . ,em) of the edges of G is said to
be a degree-minimal edge elimination scheme (dmees) of
(G,w) if for every i ∈ {1, . . . ,m},

edge ei is a degree-minimal edge in the set of all
minimum-weight edges in the graph G − {e1, . . . ,ei−1}.

Example:

G− e1

w(e) = 1

w(e) = 2

v2

v3

v4

v5v1

4

2 2



Definition
Let (G,w) be a weighted graph.

A linear ordering τ = (e1, . . . ,em) of the edges of G is said to
be a degree-minimal edge elimination scheme (dmees) of
(G,w) if for every i ∈ {1, . . . ,m},

edge ei is a degree-minimal edge in the set of all
minimum-weight edges in the graph G − {e1, . . . ,ei−1}.

Example:

G− e1

w(e) = 1

w(e) = 2

v2

v3

v4

v5v1 2

e2

4

2



Definition
Let (G,w) be a weighted graph.

A linear ordering τ = (e1, . . . ,em) of the edges of G is said to
be a degree-minimal edge elimination scheme (dmees) of
(G,w) if for every i ∈ {1, . . . ,m},

edge ei is a degree-minimal edge in the set of all
minimum-weight edges in the graph G − {e1, . . . ,ei−1}.

Example:

G− {e1, e2}

w(e) = 1

w(e) = 2

v2

v3

v4

v5v1 2

3



Definition
Let (G,w) be a weighted graph.

A linear ordering τ = (e1, . . . ,em) of the edges of G is said to
be a degree-minimal edge elimination scheme (dmees) of
(G,w) if for every i ∈ {1, . . . ,m},

edge ei is a degree-minimal edge in the set of all
minimum-weight edges in the graph G − {e1, . . . ,ei−1}.

Example:

G− {e1, e2}

w(e) = 1

w(e) = 2

v2

v3

v4

v5v1 2

3

e3



Definition
Let (G,w) be a weighted graph.

A linear ordering τ = (e1, . . . ,em) of the edges of G is said to
be a degree-minimal edge elimination scheme (dmees) of
(G,w) if for every i ∈ {1, . . . ,m},

edge ei is a degree-minimal edge in the set of all
minimum-weight edges in the graph G − {e1, . . . ,ei−1}.

Example:

G− {e1, e2, e3}

w(e) = 1

w(e) = 2

v2

v3

v4

v5v1 1

2

22

1



Definition
Let (G,w) be a weighted graph.

A linear ordering τ = (e1, . . . ,em) of the edges of G is said to
be a degree-minimal edge elimination scheme (dmees) of
(G,w) if for every i ∈ {1, . . . ,m},

edge ei is a degree-minimal edge in the set of all
minimum-weight edges in the graph G − {e1, . . . ,ei−1}.

Example:

G− {e1, e2, e3}

w(e) = 1

w(e) = 2

v2

v3

v4

v5v1 1

2

22

1

e4



Definition
Let (G,w) be a weighted graph.

A linear ordering τ = (e1, . . . ,em) of the edges of G is said to
be a degree-minimal edge elimination scheme (dmees) of
(G,w) if for every i ∈ {1, . . . ,m},

edge ei is a degree-minimal edge in the set of all
minimum-weight edges in the graph G − {e1, . . . ,ei−1}.

Example:

G− {e1, e2, e3}

w(e) = 1

w(e) = 2

v2

v3

v4

v5v1 1

2

21



Definition
Let (G,w) be a weighted graph.

A linear ordering τ = (e1, . . . ,em) of the edges of G is said to
be a degree-minimal edge elimination scheme (dmees) of
(G,w) if for every i ∈ {1, . . . ,m},

edge ei is a degree-minimal edge in the set of all
minimum-weight edges in the graph G − {e1, . . . ,ei−1}.

Example:

G− {e1, e2, e3}

w(e) = 1

w(e) = 2

v2

v3

v4

v51

2

21
e5

v1



Definition
Let (G,w) be a weighted graph.

A linear ordering τ = (e1, . . . ,em) of the edges of G is said to
be a degree-minimal edge elimination scheme (dmees) of
(G,w) if for every i ∈ {1, . . . ,m},

edge ei is a degree-minimal edge in the set of all
minimum-weight edges in the graph G − {e1, . . . ,ei−1}.

Example:

G− {e1, e2, e3}

w(e) = 1

w(e) = 2

v3

v4

v5v1 1

1

2v2



Definition
Let (G,w) be a weighted graph.

A linear ordering τ = (e1, . . . ,em) of the edges of G is said to
be a degree-minimal edge elimination scheme (dmees) of
(G,w) if for every i ∈ {1, . . . ,m},

edge ei is a degree-minimal edge in the set of all
minimum-weight edges in the graph G − {e1, . . . ,ei−1}.

Example:

G− {e1, e2, e3}

w(e) = 1

w(e) = 2

v3

v4

v5v1 1

1

2

e6

v2



Definition
Let (G,w) be a weighted graph.

A linear ordering τ = (e1, . . . ,em) of the edges of G is said to
be a degree-minimal edge elimination scheme (dmees) of
(G,w) if for every i ∈ {1, . . . ,m},

edge ei is a degree-minimal edge in the set of all
minimum-weight edges in the graph G − {e1, . . . ,ei−1}.

Example:

G− {e1, e2, e3}

w(e) = 1

w(e) = 2

v3

v4

v5v1 1

1v2



Definition
Let (G,w) be a weighted graph.

A linear ordering τ = (e1, . . . ,em) of the edges of G is said to
be a degree-minimal edge elimination scheme (dmees) of
(G,w) if for every i ∈ {1, . . . ,m},

edge ei is a degree-minimal edge in the set of all
minimum-weight edges in the graph G − {e1, . . . ,ei−1}.

Example:

G− {e1, e2, e3}

w(e) = 1

w(e) = 2

v4

v5v1 1

1

e7

v2

v3



Definition
Let (G,w) be a weighted graph.

A linear ordering τ = (e1, . . . ,em) of the edges of G is said to
be a degree-minimal edge elimination scheme (dmees) of
(G,w) if for every i ∈ {1, . . . ,m},

edge ei is a degree-minimal edge in the set of all
minimum-weight edges in the graph G − {e1, . . . ,ei−1}.

Example:

G− {e1, e2, e3}

w(e) = 1

w(e) = 2v1

v2

v3

v4

v5



A linear-time algorithm



Theorem
There exists an algorithm with the following specifications:

Input: A weighted graph (G = (V ,E),w).
Output: A degree-minimal edge elimination scheme of G.
Running time: O(|V |+ |E |).



The idea of the algorithm:

1. Consider the k level graphs.

(G,w)
w(e) = 1

w(e) = 2

w(e) = 3

v6
v1

v2

v3v4

v7

v8

v9

v5

v6
v1

v2

v3v4

v7

v8

v9

v5

v6
v1

v2

v3v4

v7

v8

v9

v5

v6
v1

v2

v3v4

v7

v8

v9

v5

1st level graph 2nd level graph 3rd level graph



The idea of the algorithm:

2. For each level graph, choose a vertex of smallest degree,
remove all the edges of weight i incident with it and iterate.

This defines an ordering of vertices within each level graph.

v6
v1

v2

v3v4

v7

v8

v9

v5

v6
v1

v2

v3v4

v7

v8

v9

v5

v6
v1

v2

v3v4

v7

v8

v9

v5

1st level graph 2nd level graph 3rd level graph

(v9, v1, v2, v3, v4, v7, v8, v5, v6) (v1, v2, v9, v4, v5, v8, v3, v6, v7) (v1, v4, v8, v2, v3, v5, v7, v9, v6)



The idea of the algorithm:

3. This also defines an ordering of the edges of weight i
according to when they were deleted in the i-th level graph.

v6
v1

v2

v3v4

v7

v8

v9

v5

v6
v1

v2

v3v4

v7

v8

v9

v5

v6
v1

v2

v3v4

v7

v8

v9

v5

1st level graph 2nd level graph 3rd level graph

(v9, v1, v2, v3, v6, v4, v8, v5, v7) (v1, v2, v9, v3, v4, v5, v7, v8, v6) (v1, v2, v3, v4, v5, v6, v7, v8, v9)

(v9v6, v1v5, v1v6, v2v5, v2v6, v3v6, v4v8, v8v5) (v1v3, v3v4, v4v5, v4v7, v5v7, v7v8, v6v8) (v1v2, v2v3, v3v5, v4v6, v5v6, v6v7, v7v9, v8v9)



The idea of the algorithm:

4. Finally, reorder the edges within each star if necessary, to
satisfy the second constraint from the definition of
degree-minimality.

v6
v1

v2

v3v4

v7

v8

v9

v5

v6
v1

v2

v3v4

v7

v8

v9

v5

v6
v1

v2

v3v4

v7

v8

v9

v5

1st level graph 2nd level graph 3rd level graph

(v9, v1, v2, v3, v6, v4, v8, v5, v7) (v1, v2, v9, v3, v4, v5, v7, v8, v6) (v1, v2, v3, v4, v5, v6, v7, v8, v9)

(v9v6, v1v5, v1v6, v2v5, v2v6, v3v6, v4v8, v8v5) (v1v3, v3v4, v4v5, v4v7, v5v7, v7v8, v6v8) (v1v2, v2v3, v3v5, v4v6, v5v6, v6v7, v7v9, v8v9)



Why do we care?



Recall:

I A graph class G is gap monotone if for every two graphs
G = (V ,E) and G′ = (V ,E ∪ F ) in G, where E ∩ F = ∅,

graph G can be obtained from G′ by a sequence of edge
deletions such that all intermediate graphs are in G.

Equivalently: if F 6= ∅, then ∃e ∈ F such that G′ − e ∈ G.

I For gap monotone graph classes, the fact that a weighted
graph is level-G can be certified by a sorted G-safe edge
elimination scheme.



An edge e in a graph G ∈ G is said to be G-safe if G − e ∈ G.

Theorem
Let G be a graph class such that for every two graphs
G = (V ,E) and G′ = (V ,E ∪ F ) in G, where E ∩ F = ∅,
every degree-minimal edge in F is G-safe.

(In particular, G is gap monotone.)

Then, for every level-G weighted graph (G,w),
every dmees is also a sorted G-safe edge elimination scheme.



We show that the condition of the theorem is satisfied for
the classes of threshold graphs, split graphs, and chain graphs.

I This gives a unifying approach to proving that these graph
classes are gap monotone.

I It also leads to linear-time recognition algorithms for
level-threshold, level-split, and level-chain weighted
graphs.



I A graph is threshold if it admits weights on vertices and a
threshold t such that

a subset of vertices is independent if and only if its total
weight is at most t .

I A graph is split if its vertex set can be partitioned into a
clique and an independent set.

I A graph is chain if it is a bipartite graph

having a bipartition (X ,Y ) such that the neighborhoods of
vertices in X are nested, that is, X = {x1, . . . , xp} such that

N(x1) ⊆ N(x2) ⊆ . . . ⊆ N(xp) .



To obtain linear running time, we proceed as follows:

1. We compute a degree-minimal edge elimination scheme τ .

2. We check whether τ is a sorted G-safe edge elimination
scheme.

The details of step 2 are class specific.



For split graphs, we use a dynamic recognition algorithm by
Ibarra.

The algorithm relies on the fact that split graphs are
characterized by their degree sequences.

Theorem (Hammer, Simeone, 1981)
Let d1 ≥ d2 ≥ . . . ≥ dn be the degree sequence of a graph G.
Also, let h = max{i : di ≥ i − 1}.

Then, G is a split graph if and only if

h∑
i=1

di = h(h − 1) +
n∑

i=h+1

di .



For threshold graphs, we can use a dynamic recognition
algorithm by Shamir and Sharan (2004).

The algorithm relies on the fact that threshold graphs are
precisely the split cographs.

It uses the dynamic recognition algorithm for cographs
developed by the authors and the algorithm by Ibarra for split
graphs.



For threshold graphs, a more direct algorithm can be
developed using the fact that

a graph is threshold if and only if it can be generated
from the one-vertex graph by successive additions of universal
and isolated vertices.



Summary

1. We generalized the concept of graph classes to graphs
equipped with an ordered partition of their edges:

a weighted graph is level-G if all its level graphs are in G.

2. A particularly nice situation arises in the case of
gap monotone graph classes:

edges can be eliminated not only block by block
but one edge at a time, respecting the weights.

In this case, dynamic graph algorithms can be applied.



Summary

3. We gave a linear-time algorithm for computing a
degree-minimal edge elimination scheme (dmees)
of an arbitrary weighted graph.

4. For the weighted graphs that are level-threshold, level-split,
or level-chain, every dmees is also a sorted G-safe edge
elimination scheme.

5. This leads to linear-time recognition algorithms.



Two open questions

1. Is there a linear-time algorithm to recognize level-chordal
weighted graphs?

2. Is the class of weakly chordal graphs gap monotone?



Thank you!

Forests

Bipartite

Chain Threshold

Split

Chordal Cochordal

Chordal bipartite

Strongly chordal


