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Connectivity augmentation
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Graph superposition

Let G and H be simple graphs, |V (G )| ≥ |V (H)|, and let

ϕ : V (H)→ V (G )

be an injective mapping of V (H) to V (G ).

A simple graph F is the superposition of G and H w.r.t. ϕ if
V (F ) = V (G ) and two distinct vertices u, v ∈ V (F ) are adjacent
in F if and only if

uv ∈ E (G ) or

u, v ∈ ϕ(V (H)) and ϕ−1(u)ϕ−1(v) ∈ E (H).

We write F = G ⊕ϕ H.
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Graph superposition

u3

H FG v1v2

v3

u1u2

F = G ⊕ϕ H where ϕ(ui ) = vi for i = 1, 2, 3.
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Structured Connectivity Augmentation

Let k be a positive integer (we are mainly interested in the cases
k = 1, 2).

Structured k-Connectivity Augmentation

Input: Graphs G and H such that G is edge
(k − 1)-connected, a weight function
ω :
(V (G)

2

)
→ N0 and a nonnegative integer W .

Task: Decide whether there is an injective
ϕ : V (H)→ V (G ) such that F = G ⊕ϕ H is edge
k-connected and the weight of the mapping
ω(ϕ) =

∑
xy∈E(H) ω(ϕ(x)ϕ(y)) ≤W .

For k = 1, we call the problem Structured Connectivity
Augmentation.
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Structured Connectivity Augmentation
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Structured Connectivity Augmentation

G H F
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Structured Connectivity Augmentation

FG H
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Our results

We say that a class of graphs C has bounded vertex-cover number,
if there is a constant t depending on C only such that the
vertex-cover number of every graph from C does not exceed t.

For every class of graphs C with bounded vertex-cover
number, Structured Connectivity Augmentation and
Structured 2-Connectivity Augmentation are solvable in
polynomial time when H ∈ C.

For any hereditary class C with unbounded vertex-cover
number and any k ≥ 1, Structured k-Connectivity
Augmentation is NP-complete when H ∈ C.

For unweighted case, we obtain necessary and sufficient
combinatorial conditions of the existence of an injective
function ϕ such that F = G ⊕ϕ H is edge k-connected
provided that G is edge (k − 1)-connected for k = 1, 2.
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Structured 2-Connectivity Augmentation

Theorem

Let t be a positive integer and C be a graph class of vertex-cover
number at most t. Then for any H ∈ C, Structured 2-Connectivity
Augmentation is solvable in time |V (G )|O(2t) logW .
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Covering bridges
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Covering bridges
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Graphs of bounded vertex-cover number

X , |X | = t
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Partial mapping
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Partial mapping

Lemma

Let G and H be graphs such that G is connected, and let
ϕ : V (H)→ V (G ) be an injection such that F = G ⊕ϕ H is
2-connected. Suppose that X is a vertex cover of H and t = |X |.
Then there is a set Y ⊆ V (H) \ X of size at most 2(t − 1) such
that for H ′ = H[X ∪ Y ] and ψ = ϕ|X∪Y , the vertices of ψ(X ∪ Y )
are in the same biconnected component of F ′ = G ⊕ψ H ′.
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Extension of a partial mapping

At most 2t classes of false twins
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Extension of a partial mapping

B4

At most 2t classes of false twins

B1

B2
B3
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Extension of a partial mapping

G2

s ≤ 2t classes of false twins

B1

B2
B3

B4

G0

G1
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Extension of a partial mapping

G2

s ≤ 2t classes of false twins

B1

B2
B3

B4

G0

G1

For (`1, . . . , `s), find an injective mapping of minimum weight of a
subset of the vertices of H containing `j vertices of the j-th class
of true twins for j ∈ {1, . . . , s} to Gi such that some vertices are
mapped to B1, . . . ,Bi to ensure that the corresponding bridges are
covered.
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Extension of a partial mapping

G2

s ≤ 2t classes of false twins

B1

B2
B3

B4

G0

G1

Consider all sums (`1, . . . , `s) = (`′1, . . . , `
′
s) + (`′′1, . . . , `

′′
s ) and find

optimal mapping where for j ∈ {1, . . . , s}, `′j vertices from the j-th
class are mapped to Bi and `′′j vertces are mapped to Gi−1.
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Structured 2-Connectivity Augmentation

Theorem

Let t be a positive integer and C be a graph class of vertex-cover
number at most t. Then for any H ∈ C, Structured 2-Connectivity
Augmentation is solvable in time |V (G )|O(2t) logW .
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Hardness

Theorem

Let k be a positive integer. Let also C be a hereditary graph class.
Then if the vertex-cover number of C is unbounded, then
Structured k-Connectivity Augmentation is NP-complete for H ∈ C
in the strong sense.
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Hardness

Observation: If C is a hereditary graph class and the vertex-cover
number of C is unbounded, then at least one of the following holds:

Kn ∈ C for all n ∈ N,

Kn,n ∈ C for all n ∈ N,

the matching graph Mn ∈ N (disjoint union of n copies of K2)
for all n ∈ N.
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Hardness

Theorem

Let k be a positive integer. Let also C be a hereditary graph class.
Then if the vertex-cover number of C is unbounded, then
Structured k-Connectivity Augmentation is NP-complete for H ∈ C
in the strong sense.

Proposition

For every positive integer k , Structured k-Connectivity
Augmentation is W[1]-hard when parameterized by β(H) even if
the weight of every pair of vertices of G is restricted to be ether 0
or 1.
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Unweighted augmentation

G H F
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Unweighted augmentation

Theorem

Let G and H be graphs such that G is connected, H has no
isolated vertices and |V (H)| ≤ |V (G )|. Then there is an injective
mapping ϕ : V (H)→ V (G ) such that F = G ⊕ϕ H is 2-connected
if and only if one of the following holds:

(i) G is 2-connected,

(ii) G is not 2-connected and p(G ) ≤ |V (H)| where p(G ) is the
number of pendant biconnected components.

unless G is a star K1,n where n is odd and H is a matching graph.
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Conclusion

Our results:

For every class of graphs C with bounded vertex-cover
number, Structured Connectivity Augmentation and
Structured 2-Connectivity Augmentation are solvable in
polynomial time when H ∈ C.

For any hereditary class C with unbounded vertex-cover
number and any k ≥ 1, Structured k-Connectivity
Augmentation is NP-complete when H ∈ C.

For unweighted case, we obtain necessary and sufficient
combinatorial conditions of the existence of an injective
function ϕ such that F = G ⊕ϕ H is edge k-connected
provided that G is edge (k − 1)-connected for k = 1, 2.
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Open questions

Can Structured k-Connectivity Augmentation be solved in
polynomial time when H belongs to a class with bounded
vertex-cover number for k ≥ 3?

What can be said about the variant of Structured
k-Connectivity Augmentation where the aim is to increase the
vertex connectivity?
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Thank You!
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