Coedit: a tool for minimal cograph edge modification

Christophe Crespelle

University of Bergen
with Daniel Lokshtanov, Thi Ha Duong Phan and Eric Thierry

Goal of PROXNET project

Representing real-world complex networks as almost structured graphs

Complex network $=$ structured graph + noise

- Modelling
- Efficient encoding : space + query time
- Understand their structure (global organisation, specific roles)
- Algorithmic theory of almost structured graphs

Take advantage of the proximity with a strongly structured graph

Goal of PROXNET project

Representing real-world complex networks as almost structured graphs

Edge modification problems (editing, completion, deletion)
Polynomial-time algorithms: set of modifications minimal for inclusion

Coedit

INPUT: an arbitrary graph

Computes either:

- a minimal cograph completion
- a minimal cograph deletion
- a minimal cograph editing

OUTPUT: the cotree of the cograph obtained

	Input format:
\# of vertices	n
	u d ${ }^{\circ}(\mathrm{u})$
degrees	vod ${ }^{\circ}(\mathrm{v})$
edges	$\left\{\begin{array}{c}u 1 \\ \text { u2 v2 } \\ \vdots\end{array}\right.$

- Written in C
- Sources available at https://www.ii.uib.no/~christophec/coedit/
- Under GNU GPL licence (can do whatever you want with it)

Algorithms

For completion

An O(n+m') algorithm with minimum at each incremental step \rightarrow improve heuristics

An O(n+m $\log ^{2} n$) algorithm
\rightarrow almost linear in the size of the input

For editing

\square An $\mathrm{O}(\mathrm{n}+\mathrm{m})$ algorithm with minimum at each incremental step

The vertex incremental approach : vertices are processed one by one

Cographs and incremental app.

Obtained from single vertices by using 2 operations:

disjoint union
(I/)

G

G_{2}
complete union
(S)

Incremental approach: a cograph \mathbf{G} and x a new incoming vertex
$G+x$ is not a cograph and we want to add (and/or delete) edges incident to x so that G+x become a cograph

Completion algorithms

First algorithm: $\mathrm{O}(\mathrm{n}+\mathrm{m}$ ')

A characterisation of cographs

[Corneil, Perl, Stewart 1981]

$G+x$ is a cograph iff there exists a node u st.:

A characterisation of cographs

[Corneil, Perl, Stewart 1981]

$G+x$ is a cograph iff there exists a node u st.:

A characterisation of cographs

In our algorithm: $G+x$ is not a cograph

A characterisation of cographs

In our algorithm: $\mathrm{G}+\mathrm{x}$ is not a cograph

Choose one node u for which you make the situation of the [CPS 81]'s theorem happen

Eligible nodes

In our algorithm : G+x is not a cograph

Completion anchored at u

In our algorithm: G+x is not a cograph

Completion anchored at u

In our algorithm : G+x is not a cograph

Completion anchored at u

In our algorithm: G+x is not a cograph

Completion anchored at u

In our algorithm: G+x is not a cograph

Completion anchored at u

In our algorithm : G+x is not a cograph

Definition: u is an eligible node Iff all parallel strict ancestors of u are such that all their children (but one) are hollow

Proceed as follows:

1) choose one eligible node u
2) make the non-hollow children of u become full (leave the others hollow)
3) for each series ancestor v of u, make all its children (but one) full
\rightarrow you obtain a cograph completion of $\mathrm{G}+\mathrm{x}$ called the completion anchored at u

Question: Is it minimal ?

First algorithm : O(n+m')

- Search the tree bottom up from the leaves adjacent to x
- Find the eligible nodes that satisfy the characterization

Note : we search only non-hollow nodes

Complexity: O(d')
[LMP 10]

- Choose one u of minimum cost and update the data structure by running [CPS 81]'s algorithm.

Complexity: $O\left(d^{\prime}\right)$ for one incremental step $O(n+m$ ') for the whole algorithm

Completion algorithms

Second algorithm: $\mathrm{O}\left(\mathrm{n}+\mathrm{m} \log ^{2} \mathrm{n}\right)$

Why is $O(n+m$ ') not necessarily optimal?

No reason to use adjacency lists to encode the output
\rightarrow there is an $\mathrm{O}(\mathrm{n})$ space representation of cographs

Why is $O(n+m$ ') not necessarily optimal?

- No reason to use adjacency lists to encode the output
\rightarrow there is an $\mathrm{O}(\mathrm{n})$ space representation of cographs

What is the expected number of edges m' in a cograph completion?

- If the input G has the vertex-expansion property, then G ' has $O\left(n^{2}\right)$ edges
- Random graphs with fixed average degree, O(n) edges, have the expansion property with high probability
\rightarrow In practice, $\mathrm{O}\left(\mathrm{n}+\mathrm{m}^{\prime}\right) \sim \mathrm{O}\left(\mathrm{n}^{2}\right)$
\rightarrow We achieve $O\left(n+m \log ^{2} n\right)$ time

Why is $\mathrm{O}(\mathrm{n}+\mathrm{m}$ ') not necessarily optimal?

- No reason to use adjacency lists to encode the output
\rightarrow there is an $\mathrm{O}(\mathrm{n})$ space representation of cographs

What is the expected number of edges m' in a cograph completion?

- If the input G has the vertex-expansion property, then G ' has $O\left(n^{2}\right)$ edges
- Random graphs with fixed average degree, $\mathbf{O}(\mathbf{n})$ edges, have the expansion property with high probability
\rightarrow In practice, $\mathrm{O}\left(\mathrm{n}+\mathrm{m}^{\prime}\right) \sim \mathrm{O}\left(\mathrm{n}^{2}\right)$
\rightarrow We achieve $\mathrm{O}\left(\mathrm{n}+\mathrm{m} \log ^{2} \mathrm{n}\right)$ time
Where is the room for improvement of the complexity?

> A constant number of neighbours of x can force to search an $\Omega(n)$ part of the co tree

Second algorithm : O(n + m $\left.\log ^{2} n\right)$

Note: we abandon the minimum incremental \rightarrow only minimal
we use a dynamic data-structure for lowest ancestor queries [Sleator, Tarjan 1983]

- In $O(\log n)$ time: $w=I c a(u, v)$ and w_{u} the child of w that is an ancestor of u
- Update the structure in $\mathrm{O}(\log \mathrm{n})$ time under elementary tree modifications
- we use ordered lists
[Dietz, Sleator 1987]
- In O(1) time: order between two elements in the list
- Update the structure in $\mathrm{O}(1)$ time under deletion and insertion of an element

Second algorithm : O(n + m $\left.\log ^{2} n\right)$

Our goal : determine the lowest eligible, non-hollow and non-forced nodes \rightarrow minimal completion

- Lowest eligible nodes
\rightarrow highest parallel nodes with ≥ 2 non-hollow children
- build T' : the subtree of lowest common ancestors of neighbours of x
- Keep the highest parallel nodes in T'

1) sort neighbours of x from left to right: $O\left(d \log ^{2} n\right)$ time
2) insert neighbours one by one Total : O(d log n) time

Complexity: $O\left(d \log ^{2} n\right)$ for one incremental step $\mathrm{O}\left(\mathrm{n}+\mathrm{m} \log ^{2} \mathrm{n}\right)$ for the whole algorithm

Editing algorithm $\mathrm{O}(\mathrm{n}+\mathrm{m})$ time

Cograph editing

Use both addition and deletion of edges
Find a minimum cardinality modification at each incremental step
Complexity $\mathrm{O}(\mathrm{n}+\mathrm{m})$ time, $\mathrm{O}(\mathrm{d})$ time at each incremental step
Obs.: a minimum editing is not worse than deleting all edges incident to x

1) compute all maximal preponderant nodes and their budget

2) for each parent u of some preponderant node, climb in the tree and try to fill what must be by using only the budgets of the children of u reach the root : success, otherwise : failure
\rightarrow ensures an O(d) time complexity

Coedit : use case

Cograph edition of real-world graphs

35 real-world graphs

8 random graphs

Context	Network	n	m	d°	\%mod
WWW	in-2004	1148875	12281937	21.4	12%
WWW	cnr-2000	227058	2187201	19.3	19%
PROTEIN	reactome	5973	145778	48.8	22%
SOFTWARE	jdk	6434	53658	16.7	29%
SOFTWARE	jung-j	6120	50290	16.4	29%
WWW	eu-2005	835044	15718784	37.7	29%
CO-AUTHOR	ca-GrQc	4158	13422	6.5	34%
CO-AUTHOR	ca-HepPh	11204	117619	21.0	34%
SPECIES	foodweb	183	2434	26.6	43%
CO-AUTHOR	dblp	317080	1049866	6.6	45%
WORD-REL.	wordnet	145145	656230	9.0	48%
COMMUNIC.	wiki-Talk	2388953	4656682	3.9	49%
CO-SOLD	amazon	334863	925872	5.5	49%
CO-AUTHOR	ca-CondMat	21363	91286	8.6	52%
RANDOM	ER-Gnm_1M-2	796208	958827	2.4	52%
CO-AUTHOR	ca-HepTh	8638	24806	5.7	54%
INTERNET	as2000	6474	12572	3.9	54%
ROAD	roadNet-TX	1351137	1879201	2.8	54%
INTERNET	as-caida2007	26475	53381	4.0	55%
CO-AUTHOR	ca-AstroPh	17903	196972	22.0	59%
INTERNET	topology	34761	107720	6.2	61%
RANDOM	ER-Gnm_1M-3	940987	1494643	3.2	63%
INTERNET	as-skitter	1694616	11094209	13.1	64 \%
CO-OCCUR	bible-names	1707	9059	10.6	67%
PROTEIN	figeys	2217	6418	5.8	67%
CITATION-SCI.	cora	23166	89157	7.7	68 \%
SOCIAL	youtube	1134890	2987624	5.3	69%
CO-ACTOR	actor-col.	374511	15014839	80.2	71%
P2P-CONNECT.	p2p-Gnutella	62561	147878	4.7	71%
RANDOM	ER-Gnm_1M-4	980191	1999203	4.1	71%
CITATION-SCI.	citeseer	365154	1721981	9.4	75%
CITATION-PAT.	cit-Patents	3764117	16511740	8.8	76%
SOFTWARE	linux	30817	213208	13.8	77%
SOCIAL	LiveJournal	3997962	34681189	17.4	78%
CITATION-SCI.	cit-HepTh	27400	352021	25.7	79%
RANDOM	ER-Gnm_1M-6	997479	2999988	6.0	79%
CITATION-SCI.	cit-HepPh	34401	420784	24.5	81%
RANDOM	ER-Gnm_1M-8	999684	3999999	8.0	84%
RANDOM	ER-Gnm_1M-10	999952	5000000	10.0	87%
RANDOM	ER-Gnm_1M-15	1000000	7500000	15.0	91%
SOCIAL	orkut	3072441	117185083	76.3	91%
RANDOM	ER-Gnm_1M-20	1000000	10000000	20.0	93%
WORD-REL.	Thesaurus	23132	297094	25.7	93%

Cograph edition of real-world graphs

Cograph edition of real-world graphs

Close to cographs
\qquad WWW
software

Context	Network	\mathbf{n}	\mathbf{m}	\mathbf{d}°	\% mod
WWW	in-2004	1148875	12281937	21.4	12%
WWW	cnr-2000	227058	2187201	19.3	19%
PROTEIN	reactome	5973	145778	48.8	22%
SOFTWARE	jdk	6434	53658	16.7	29%
SOFTWARE	jung-j	6120	50290	16.4	29%
WWW	eu-2005	835044	15718784	37.7	29%
CO-AUTHOR	ca-GrQc	4158	13422	6.5	34%
CO-AUTHOR	ca-HepPh	11204	117619	21.0	34%
SPECIES	foodweb	183	2434	26.6	43%
CO-AUTHOR	dblp	317080	1049866	6.6	45%
WORD-REL.	wordnet	145145	656230	9.0	48%
COMMUNIC.	wiki-Talk	2388953	4656682	3.9	49%
CO-SOLD	amazon	334863	925872	5.5	49%
CO-AUTHOR	ca-CondMat	21363	91286	8.6	52%
RANDOM	ER-Gnm_1M-2	796208	958827	2.4	52%
CO-AUTHOR	ca-HepTh	8638	24806	5.7	54%
INTERNET	as2000	6474	12572	3.9	54%
ROAD	roadNet-TX	1351137	1879201	2.8	54%
INTERNET	as-caida2007	26475	53381	4.0	55%
CO-AUTHOR	ca-AstroPh	17903	196972	22.0	59%
INTERNET	topology	34761	107720	6.2	61%
RANDOM	ER-Gnm_1M-3	940987	1494643	3.2	63%
INTERNET	as-skitter	1694616	11094209	13.1	64%
CO-OCCUR	bible-names	1707	9059	10.6	67%
PROTEIN	figeys	2217	6418	5.8	67%
CITATION-SCI.	cora	23166	89157	7.7	68%
SOCIAL	youtube	1134890	2987624	5.3	69%
CO-ACTOR	actor-col.	374511	15014839	80.2	71%
P2P-CONNECT.	p2p-Gnutella	62561	147878	4.7	71%
RANDOM	ER-Gnm_1M-4	980191	1999203	4.1	71%
CITATION-SCI.	citeseer	365154	1721981	9.4	75%
CITATION-PAT.	cit-Patents	3764117	16511740	8.8	76%
SOFTWARE	linux	30817	213208	13.8	77%
SOCIAL	LiveJournal	3997962	34681189	17.4	78%
CITATION-SCI.	cit-HepTh	27400	352021	25.7	79%
RANDOM	ER-Gnm_1M-6	997479	2999988	6.0	79%
CITATION-SCI.	cit-HepPh	34401	420784	24.5	81%
RANDOM	ER-Gnm_1M-8	999684	3999999	8.0	84%
RANDOM	ER-Gnm_1M-10	999952	5000000	10.0	87%
RANDOM	ER-Gnm_1M-15	1000000	7500000	15.0	91%
SOCIAL	orkut	3072441	117185083	76.3	91%
RANDOM	ER-Gnm_1M-20	1000000	10000000	20.0	93%
WORD-REL.	Thesaurus	23132	297094	25.7	93%

The proximity with cographs highly depends on the real-world context

Cograph edition of real-world graphs

Not close not far
internet
road

Context	Network	\mathbf{n}	\mathbf{m}	\mathbf{d}°	\% mod
WWW	in-2004	1148875	12281937	21.4	12%
WWW	cnr-2000	227058	2187201	19.3	19%
PROTEIN	reactome	5973	145778	48.8	22%
SOFTWARE	jdk	6434	53658	16.7	29%
SOFTWARE	jung-j	6120	50290	16.4	29%
WWW	eu-2005	835044	15718784	37.7	29%
CO-AUTHOR	ca-GrQc	4158	13422	6.5	34%
CO-AUTHOR	ca-HepPh	11204	117619	21.0	34%
SPECIES	foodweb	183	2434	26.6	43%
CO-AUTHOR	dblp	317080	1049866	6.6	45%
WORD-REL.	wordnet	145145	656230	9.0	48%
COMMUNIC.	wiki-Talk	2388953	4656682	3.9	49%
CO-SOLD	amazon	334863	925872	5.5	49%
CO-AUTHOR	ca-CondMat	21363	91286	8.6	52%
RANDOM	ER-Gnm_1M-2	796208	958827	2.4	52%
CO-AUTHOR	ca-HepTh	8638	24806	5.7	54%
INTERNET	as2000	6474	12572	3.9	54%
ROAD	roadNet-TX	1351137	1879201	2.8	54%
INTERNET	as-caida2007	26475	53381	4.0	55%
CO-AUTHOR	ca-AstroPh	17903	196972	22.0	59%
INTERNET	topology	34761	107720	6.2	61%
RANDOM	ER-Gnm_1M-3	940987	1494643	3.2	63%
INTERNET	as-skitter	1694616	11094209	13.1	64%
CO-OCCUR	bible-names	1707	9059	10.6	67%
PROTEIN	figeys	2217	6418	5.8	67%
CITATION-SCI.	cora	23166	89157	7.7	68%
SOCIAL	youtube	1134890	2987624	5.3	69%
CO-ACTOR	actor-col.	374511	15014839	80.2	71%
P2P-CONNECT.	p2p-Gnutella	62561	147878	4.7	71%
RANDOM	ER-Gnm_1M-4	980191	1999203	4.1	71%
CITATION-SCI.	citeseer	365154	1721981	9.4	75%
CITATION-PAT.	cit-Patents	3764117	16511740	8.8	76%
SOFTWARE	linux	30817	213208	13.8	77%
SOCIAL	LiveJournal	3997962	34681189	17.4	78%
CITATION-SCI.	cit-HepTh	27400	352021	25.7	79%
RANDOM	ER-Gnm_1M-6	997479	2999988	6.0	79%
CITATION-SCI.	cit-HepPh	34401	420784	24.5	81%
RANDOM	ER-Gnm_1M-8	999684	3999999	8.0	84%
RANDOM	ER-Gnm_1M-10	999952	5000000	10.0	87%
RANDOM	ER-Gnm_1M-15	1000000	7500000	15.0	91%
SOCIAL	orkut	3072441	117185083	76.3	91%
RANDOM	ER-Gnm_1M-20	1000000	10000000	20.0	93%
WORD-REL.	Thesaurus	23132	297094	25.7	93%

The proximity with cographs highly depends on the real-world context

Cograph edition of real-world graphs

Testing the modelling approach

Conclusion

(1) strongly structured

c d styz

(2) random modifications

global density distances
? degree distribution
? local density

Results of generation

Local density

Global clustering coefficient

Degree distribution

- Almost cograph model
- Real distribution

LiveJournal (78\%)

Conclusion

(1) strongly structured

c d styz

The cograph structure successfully captures these properties
(2) random modifications

global density distances degree distribution local density

Conclusion

(1) strongly structured

The cograph structure successfully captures these properties

2 random modifications

global density distances degree distribution local density

To complete the model

- Edit a real-world graph into a cograph
- Generate a similar cotree
- Apply random modifications to the cograph

Perspectives

- Assess the quality of the set of modifications obtained from the inclusion-minimal approach
- Consider other graph classes suitable for other kinds of networks
- Chordal graphs \rightarrow social networks, citations
- Related to planar graphs \rightarrow internet, road networks

Other possibilities of this representation

- Efficient encoding
- Algorithmics of almost structured graphs

PROXNET - Modelling Complex Networks Through Graph Editing Problems

Marie Sklodowska-Curie Actions of the European Union

About PROXNET

PROXNET is a project funded by the MSCA program of the European Union. It is hosted at the University of Bergen, with principal researcher Christophe Crespelle and supervised by Pinar Heggernes.

The goal of the PROXNET project is to open a new way for analysing, modelling and managing complex networks, through graph editing problems. The reason why these networks are said to be complex is that they are loosely structured, due to the part of uncertainty and randomness they contain. On the other hand, the real-world context where they come from strongly constrains their organisation and gives them some specific structure. The difficulty in retrieving this structure is that it is altered by the noise esulting from the uncertainty and randomness that these networks contain. In the PROXNET project, we retrieve the hidden structures of complex networks thanks to graph editing problems, which consist in changing some adjacencies of the graph in order to obtain a desired property. We develop the algorithms necessary to solve graph editing problems on huge instances of graphs, we apply them to real-world datasets and use the results obtained in order to design new models of complex networks

Contact information

e-mail christophe dot crespelle at uib dot no (dot = ".", at = "@")
Postal address Postboks 7803
5020 Bergen, Norway
Location Hoyteknologisentere
Thormøhlens Gate 55, Bergen

News

01/23/2020 Workshop on Graph Modification: Algorithms, Experiments and New Problems in Bergen, Norway 06/03/2019 Workshop on Kernelization in Bergen, Norway
03/04/2019 Conference on Algorithms, Optimization and Learning in Dynamics Environments in Hanoi, Vietnam
11/15/2018 Graph Theory and Applications Workshop in Hanoi, Vietnam.
09/17/2018 Operation Research + Parameterized Complexity Workshop in Solstrand, Norway.
08/09/2018 China-Norway FPT workshop in Bergen, Norway.
03/21/2018 16th Annual Winter School in Algorithms, Graph Theory and Combinatorics in Geilo, Norway.

Software

Coedit
Minimal completion, deletion and editing of an arbitrary graph into a cograph
Released January 2020.
sources

Coedit: a tool for minimal cograph edge modification

Christophe Crespelle

University of Bergen
with Daniel Lokshtanov, Thi Ha Duong Phan and Eric Thierry

