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Goal of PROXNET project

Modelling

Efficient encoding : space + query time

Understand their structure (global organisation, specific roles)

Algorithmic theory of almost structured graphs
Take advantage of the proximity with a strongly structured graph

+=
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Representing real-world complex networks
as almost structured graphs

Complex network = structured graph + noise



  

Goal of PROXNET project

Edge modification problems (editing, completion, deletion)

Polynomial-time algorithms: set of modifications minimal for inclusion
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Representing real-world complex networks
as almost structured graphs

+

structure noise



  

Coedit

INPUT: an arbitrary graph

Computes either:

 a minimal cograph completion
 a minimal cograph deletion
 a minimal cograph editing

In order to:

 Written in C
 Sources available at https://www.ii.uib.no/~christophec/coedit/
 Under GNU GPL licence (can do whatever you want with it) 3

OUTPUT: the cotree of the cograph obtained

Input format:
n
u d°(u)
v d°(v)

u1 v1
u2 v2

Output format:
n
l (=0 or 1)
u #child(u)
v #child(v)

parent(u) u
parent(v) v

# of vertices

degrees

edges

# of nodes

# of children

Edges of 
the tree

Label of the root



  

Algorithms
For completion

An O(n+m log2n) algorithm
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An O(n+m’) algorithm with minimum at each incremental step
improve heuristics

almost linear in the size of the input 

For editing

An O(n+m) algorithm with minimum at each incremental step

The vertex incremental approach : vertices are processed one by one

X X

add only 
edges 

incident to x



  

Cographs and incremental app.
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S

//

S S

a

b

t zs yc d

Obtained from single vertices by using 2 operations:

disjoint union 
(//)

complete union
(S)

G
1

G
2

G
1

G
2

cotree

O(n) space

S

//

S

//

S S S

X

fullmixed

hollow

G a cograph new vertex

Incremental approach: a cograph G and x a new incoming vertex

G+x is not a cograph and we want to add (and/or delete) edges incident to x
so that G+x become a cograph



  

Completion algorithms

First algorithm: O(n+m’)



  

A characterisation of cographs
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S

//

S

//

S

fullfull

full full

full full

hollowhollow

hollowhollow

hollow hollow

u

X

G+x is a cograph iff there exists a node u st.:
[Corneil, Perl, Stewart 1981]

Insertion node
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S

//

S

//

S

fullfull

full full

full full

hollowhollow

hollowhollow

hollow hollow

u

X

G+x is a cograph iff there exists a node u st.:
[Corneil, Perl, Stewart 1981]

Insertion node

S

//



  

A characterisation of cographs
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S

//

S

//

S

X

In our algorithm : G+x is not a cograph



  

A characterisation of cographs
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S

//

S

//

S

X

In our algorithm : G+x is not a cograph

Choose one node u for which 
you make the situation of the 
[CPS 81]’s theorem happen



  

Eligible nodes
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non-hollow hollow

X

In our algorithm : G+x is not a cograph

Definition: u is an eligible node Iff all parallel 
strict ancestors of u are such that all their children 
(but one) are hollow

S

//

S

//

S

hollow hollow

hollowhollow



  

Completion anchored at u
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S

//

S

//

non-hollow hollow

X

In our algorithm : G+x is not a cograph

1) choose one eligible node u

Proceed as follows :

S

Definition: u is an eligible node Iff all parallel 
strict ancestors of u are such that all their children 
(but one) are hollow



  

Completion anchored at u
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S

//

S

//

non-hollow hollow

X

In our algorithm : G+x is not a cograph

1) choose one eligible node u

2) make the non-hollow children of u become full
    (leave the others hollow)

Proceed as follows :

S

Definition: u is an eligible node Iff all parallel 
strict ancestors of u are such that all their children 
(but one) are hollow



  

Completion anchored at u
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S

//

S

//

non-hollow hollow

X

In our algorithm : G+x is not a cograph

1) choose one eligible node u

2) make the non-hollow children of u become full
    (leave the others hollow)

3) for each series ancestor v of u, make all its           
    children (but one) full

Proceed as follows :

S

Definition: u is an eligible node Iff all parallel 
strict ancestors of u are such that all their children 
(but one) are hollow



  

Completion anchored at u
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S

//

S

//

non-hollow hollow

X

In our algorithm : G+x is not a cograph

1) choose one eligible node u

2) make the non-hollow children of u become full
    (leave the others hollow)

3) for each series ancestor v of u, make all its           
    children (but one) full

Proceed as follows :

you obtain a cograph completion of G+x

called the completion anchored at u

S

Definition: u is an eligible node Iff all parallel 
strict ancestors of u are such that all their children 
(but one) are hollow



  

Completion anchored at u

S

//

S

//

non-hollow hollow

X

In our algorithm : G+x is not a cograph

1) choose one eligible node u

2) make the non-hollow children of u become full
    (leave the others hollow)

3) for each series ancestor v of u, make all its           
    children (but one) full

Proceed as follows :

you obtain a cograph completion of G+x

called the completion anchored at u

S

Question: Is it minimal ?

Definition: u is an eligible node Iff all parallel 
strict ancestors of u are such that all their children 
(but one) are hollow

9 We have a characterization for this



  

First algorithm : O(n+m’)

Complexity : O(d’)

Note : we search only 
non-hollow nodes

S

S

S

//

//

[LMP 10]

 Search the tree bottom up from the leaves adjacent to x
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 Find the eligible nodes that satisfy the characterization

 Choose one u of minimum cost and update the data structure by     
 running [CPS 81]’s algorithm.

Complexity : O(d’) for one incremental step
O(n+m’) for the whole algorithm



  

Completion algorithms

Second algorithm: O(n + m log2n)



  

Why is O(n+m’) not necessarily optimal?
 No reason to use adjacency lists to encode the output

there is an O(n) space representation of cographs

11



  

Why is O(n+m’) not necessarily optimal?
 No reason to use adjacency lists to encode the output

 What is the expected number of edges m’ in a cograph completion?

 If the input G has the vertex-expansion property, then G’ has O(n2) edges

 Random graphs with fixed average degree, O(n) edges, have the 
expansion property with high probability

In practice, O(n+m’) ~ O(n2)

there is an O(n) space representation of cographs

We achieve O(n+m log2n) time
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Why is O(n+m’) not necessarily optimal?
 No reason to use adjacency lists to encode the output

 What is the expected number of edges m’ in a cograph completion?

 If the input G has the vertex-expansion property, then G’ has O(n2) edges

 Random graphs with fixed average degree, O(n) edges, have the 
expansion property with high probability

In practice, O(n+m’) ~ O(n2)

there is an O(n) space representation of cographs

We achieve O(n+m log2n) time

 Where is the room for improvement of the complexity?
X

A constant number of neighbours of x
can force to search an Ω(n) part of the co tree
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Second algorithm : O(n + m log2n)

 Note: we abandon the minimum incremental → only minimal

 we use a dynamic data-structure for lowest ancestor queries

 In O(log n) time: w=lca(u,v) and w
u
 the child of w that is an ancestor of u

 Update the structure in O(log n) time under elementary tree modifications

[Sleator, Tarjan 1983]

 we use ordered lists

 In O(1) time: order between two elements in the list

 Update the structure in O(1) time under deletion and insertion of an element

[Dietz, Sleator 1987]
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Second algorithm : O(n + m log2n)

 Lowest eligible nodes

 build T’ : the subtree of lowest common ancestors of neighbours of x

Our goal : determine the lowest eligible, non-hollow and non-forced nodes
minimal completion

1) sort neighbours of x from left to right : O(d log2n) time

Complexity : O(d log2n) for one incremental step
  O(n+m log2n) for the whole algorithm

highest parallel nodes with ≥2 non-hollow children 

 Keep the highest parallel nodes in T’

O(d) size

2) insert neighbours one by one
    Total :O(d log n) time
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Editing algorithm
O(n + m) time



  

Cograph editing
Use both addition and deletion of edges

Find a minimum cardinality modification at each incremental step

14

Complexity O(n+m) time, O(d) time at each incremental step

Obs.: a minimum editing is not worse than deleting all edges incident to x

1) compute all maximal preponderant nodes and their budget

u preponderant, budget is 5-3=2

2) for each parent u of some preponderant node, climb in the tree and try    
    to fill what must be by using only the budgets of the children of u  

reach the root : success, otherwise : failure 

ensures an O(d) time complexity 



  

Coedit : use case



  

Cograph edition of real-world graphs

35 real-world 
graphs

+

8 random 
graphs
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Cograph edition of real-world graphs

35 real-world 
graphs

+

8 random 
graphs

RESULTS

 Some networks are very 

close from cographs

 Random graphs are never

 A wide range of proximity : 

12% to 93%

 The proximity with cographs 

highly depends on the

real-world context
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Cograph edition of real-world graphs

www

software

Close to cographs

 The proximity with cographs 

highly depends on the

real-world context
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Cograph edition of real-world graphs

Not close not far

internet

road

 The proximity with cographs 

highly depends on the

real-world context
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Cograph edition of real-world graphs

Far from cographs

citation

social

 The proximity with cographs 

highly depends on the

real-world context
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Testing the modelling approach

+

strongly structured random modifications1 2

a

b

t zs yc d

cographs 
obtained 

from 
edition

same 
number as 
in edition 
problem

compare with the original 
real-world network
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Conclusion

+

strongly structured random modifications1 2

a

b

t zs yc d

global density

distances

degree distribution

local density
?
?
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Results of generation

?
#

#
global CC =

Real distribution

Almost cograph model

Local density Degree distribution

17



  

Conclusion

The cograph structure 
successfully captures 

these properties

+

strongly structured random modifications1 2

a

b

t zs yc d

global density

distances

degree distribution

local density
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Conclusion

The cograph structure 
successfully captures 

these properties

+

strongly structured random modifications1 2

a

b

t zs yc d

global density

distances

degree distribution

local density

To complete the model

 Edit a real-world graph into a cograph
 Generate a similar cotree
 Apply random modifications to the cograph
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Perspectives

Other possibilities of this representation  

 Efficient encoding

 Algorithmics of almost structured graphs 

Consider other graph classes suitable for other kinds of networks

Assess the quality of the set of modifications obtained from the 
inclusion-minimal approach

 Related to planar graphs   →   internet, road networks 

 Chordal graphs   →   social networks, citations 

19
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