

Coedit: a tool for minimal
cograph edge modification

with Daniel Lokshtanov, Thi Ha Duong Phan and Eric Thierry

Christophe Crespelle

University of Bergen

Goal of PROXNET project

Modelling

Efficient encoding : space + query time

Understand their structure (global organisation, specific roles)

Algorithmic theory of almost structured graphs
Take advantage of the proximity with a strongly structured graph

+=

1

Representing real-world complex networks
as almost structured graphs

Complex network = structured graph + noise

Goal of PROXNET project

Edge modification problems (editing, completion, deletion)

Polynomial-time algorithms: set of modifications minimal for inclusion

2

Representing real-world complex networks
as almost structured graphs

+

structure noise

Coedit

INPUT: an arbitrary graph

Computes either:

 a minimal cograph completion
 a minimal cograph deletion
 a minimal cograph editing

In order to:

 Written in C
 Sources available at https://www.ii.uib.no/~christophec/coedit/
 Under GNU GPL licence (can do whatever you want with it) 3

OUTPUT: the cotree of the cograph obtained

Input format:
n
u d°(u)
v d°(v)

u1 v1
u2 v2

Output format:
n
l (=0 or 1)
u #child(u)
v #child(v)

parent(u) u
parent(v) v

of vertices

degrees

edges

of nodes

of children

Edges of
the tree

Label of the root

Algorithms
For completion

An O(n+m log2n) algorithm

4

An O(n+m’) algorithm with minimum at each incremental step
improve heuristics

almost linear in the size of the input

For editing

An O(n+m) algorithm with minimum at each incremental step

The vertex incremental approach : vertices are processed one by one

X X

add only
edges

incident to x

Cographs and incremental app.

5

S

//

S S

a

b

t zs yc d

Obtained from single vertices by using 2 operations:

disjoint union
(//)

complete union
(S)

G
1

G
2

G
1

G
2

cotree

O(n) space

S

//

S

//

S S S

X

fullmixed

hollow

G a cograph new vertex

Incremental approach: a cograph G and x a new incoming vertex

G+x is not a cograph and we want to add (and/or delete) edges incident to x
so that G+x become a cograph

Completion algorithms

First algorithm: O(n+m’)

A characterisation of cographs

6

S

//

S

//

S

fullfull

full full

full full

hollowhollow

hollowhollow

hollow hollow

u

X

G+x is a cograph iff there exists a node u st.:
[Corneil, Perl, Stewart 1981]

Insertion node

A characterisation of cographs

6

S

//

S

//

S

fullfull

full full

full full

hollowhollow

hollowhollow

hollow hollow

u

X

G+x is a cograph iff there exists a node u st.:
[Corneil, Perl, Stewart 1981]

Insertion node

S

//

A characterisation of cographs

7

S

//

S

//

S

X

In our algorithm : G+x is not a cograph

A characterisation of cographs

7

S

//

S

//

S

X

In our algorithm : G+x is not a cograph

Choose one node u for which
you make the situation of the
[CPS 81]’s theorem happen

Eligible nodes

8

non-hollow hollow

X

In our algorithm : G+x is not a cograph

Definition: u is an eligible node Iff all parallel
strict ancestors of u are such that all their children
(but one) are hollow

S

//

S

//

S

hollow hollow

hollowhollow

Completion anchored at u

9

S

//

S

//

non-hollow hollow

X

In our algorithm : G+x is not a cograph

1) choose one eligible node u

Proceed as follows :

S

Definition: u is an eligible node Iff all parallel
strict ancestors of u are such that all their children
(but one) are hollow

Completion anchored at u

9

S

//

S

//

non-hollow hollow

X

In our algorithm : G+x is not a cograph

1) choose one eligible node u

2) make the non-hollow children of u become full
 (leave the others hollow)

Proceed as follows :

S

Definition: u is an eligible node Iff all parallel
strict ancestors of u are such that all their children
(but one) are hollow

Completion anchored at u

9

S

//

S

//

non-hollow hollow

X

In our algorithm : G+x is not a cograph

1) choose one eligible node u

2) make the non-hollow children of u become full
 (leave the others hollow)

3) for each series ancestor v of u, make all its
 children (but one) full

Proceed as follows :

S

Definition: u is an eligible node Iff all parallel
strict ancestors of u are such that all their children
(but one) are hollow

Completion anchored at u

9

S

//

S

//

non-hollow hollow

X

In our algorithm : G+x is not a cograph

1) choose one eligible node u

2) make the non-hollow children of u become full
 (leave the others hollow)

3) for each series ancestor v of u, make all its
 children (but one) full

Proceed as follows :

you obtain a cograph completion of G+x

called the completion anchored at u

S

Definition: u is an eligible node Iff all parallel
strict ancestors of u are such that all their children
(but one) are hollow

Completion anchored at u

S

//

S

//

non-hollow hollow

X

In our algorithm : G+x is not a cograph

1) choose one eligible node u

2) make the non-hollow children of u become full
 (leave the others hollow)

3) for each series ancestor v of u, make all its
 children (but one) full

Proceed as follows :

you obtain a cograph completion of G+x

called the completion anchored at u

S

Question: Is it minimal ?

Definition: u is an eligible node Iff all parallel
strict ancestors of u are such that all their children
(but one) are hollow

9 We have a characterization for this

First algorithm : O(n+m’)

Complexity : O(d’)

Note : we search only
non-hollow nodes

S

S

S

//

//

[LMP 10]

 Search the tree bottom up from the leaves adjacent to x

10

 Find the eligible nodes that satisfy the characterization

 Choose one u of minimum cost and update the data structure by
 running [CPS 81]’s algorithm.

Complexity : O(d’) for one incremental step
O(n+m’) for the whole algorithm

Completion algorithms

Second algorithm: O(n + m log2n)

Why is O(n+m’) not necessarily optimal?
 No reason to use adjacency lists to encode the output

there is an O(n) space representation of cographs

11

Why is O(n+m’) not necessarily optimal?
 No reason to use adjacency lists to encode the output

 What is the expected number of edges m’ in a cograph completion?

 If the input G has the vertex-expansion property, then G’ has O(n2) edges

 Random graphs with fixed average degree, O(n) edges, have the
expansion property with high probability

In practice, O(n+m’) ~ O(n2)

there is an O(n) space representation of cographs

We achieve O(n+m log2n) time

11

Why is O(n+m’) not necessarily optimal?
 No reason to use adjacency lists to encode the output

 What is the expected number of edges m’ in a cograph completion?

 If the input G has the vertex-expansion property, then G’ has O(n2) edges

 Random graphs with fixed average degree, O(n) edges, have the
expansion property with high probability

In practice, O(n+m’) ~ O(n2)

there is an O(n) space representation of cographs

We achieve O(n+m log2n) time

 Where is the room for improvement of the complexity?
X

A constant number of neighbours of x
can force to search an Ω(n) part of the co tree

11

Second algorithm : O(n + m log2n)

 Note: we abandon the minimum incremental → only minimal

 we use a dynamic data-structure for lowest ancestor queries

 In O(log n) time: w=lca(u,v) and w
u
 the child of w that is an ancestor of u

 Update the structure in O(log n) time under elementary tree modifications

[Sleator, Tarjan 1983]

 we use ordered lists

 In O(1) time: order between two elements in the list

 Update the structure in O(1) time under deletion and insertion of an element

[Dietz, Sleator 1987]

12

Second algorithm : O(n + m log2n)

 Lowest eligible nodes

 build T’ : the subtree of lowest common ancestors of neighbours of x

Our goal : determine the lowest eligible, non-hollow and non-forced nodes
minimal completion

1) sort neighbours of x from left to right : O(d log2n) time

Complexity : O(d log2n) for one incremental step
 O(n+m log2n) for the whole algorithm

highest parallel nodes with ≥2 non-hollow children

 Keep the highest parallel nodes in T’

O(d) size

2) insert neighbours one by one
 Total :O(d log n) time

13

Editing algorithm
O(n + m) time

Cograph editing
Use both addition and deletion of edges

Find a minimum cardinality modification at each incremental step

14

Complexity O(n+m) time, O(d) time at each incremental step

Obs.: a minimum editing is not worse than deleting all edges incident to x

1) compute all maximal preponderant nodes and their budget

u preponderant, budget is 5-3=2

2) for each parent u of some preponderant node, climb in the tree and try
 to fill what must be by using only the budgets of the children of u

reach the root : success, otherwise : failure

ensures an O(d) time complexity

Coedit : use case

Cograph edition of real-world graphs

35 real-world
graphs

+

8 random
graphs

15

Cograph edition of real-world graphs

35 real-world
graphs

+

8 random
graphs

RESULTS

 Some networks are very

close from cographs

15

Cograph edition of real-world graphs

35 real-world
graphs

+

8 random
graphs

RESULTS

 Some networks are very

close from cographs

 Random graphs are never

15

Cograph edition of real-world graphs

35 real-world
graphs

+

8 random
graphs

RESULTS

 Some networks are very

close from cographs

 Random graphs are never

 A wide range of proximity :

12% to 93%

15

Cograph edition of real-world graphs

35 real-world
graphs

+

8 random
graphs

RESULTS

 Some networks are very

close from cographs

 Random graphs are never

 A wide range of proximity :

12% to 93%

 The proximity with cographs

highly depends on the

real-world context

15

Cograph edition of real-world graphs

www

software

Close to cographs

 The proximity with cographs

highly depends on the

real-world context

15

Cograph edition of real-world graphs

Not close not far

internet

road

 The proximity with cographs

highly depends on the

real-world context

15

Cograph edition of real-world graphs

Far from cographs

citation

social

 The proximity with cographs

highly depends on the

real-world context

15

Testing the modelling approach

+

strongly structured random modifications1 2

a

b

t zs yc d

cographs
obtained

from
edition

same
number as
in edition
problem

compare with the original
real-world network

16

Conclusion

+

strongly structured random modifications1 2

a

b

t zs yc d

global density

distances

degree distribution

local density
?
?

16

Results of generation

?
#

#
global CC =

Real distribution

Almost cograph model

Local density Degree distribution

17

Conclusion

The cograph structure
successfully captures

these properties

+

strongly structured random modifications1 2

a

b

t zs yc d

global density

distances

degree distribution

local density

18

Conclusion

The cograph structure
successfully captures

these properties

+

strongly structured random modifications1 2

a

b

t zs yc d

global density

distances

degree distribution

local density

To complete the model

 Edit a real-world graph into a cograph
 Generate a similar cotree
 Apply random modifications to the cograph

18

Perspectives

Other possibilities of this representation

 Efficient encoding

 Algorithmics of almost structured graphs

Consider other graph classes suitable for other kinds of networks

Assess the quality of the set of modifications obtained from the
inclusion-minimal approach

 Related to planar graphs → internet, road networks

 Chordal graphs → social networks, citations

19

+=

Coedit: a tool for minimal
cograph edge modification

with Daniel Lokshtanov, Thi Ha Duong Phan and Eric Thierry

Christophe Crespelle

University of Bergen

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

