A Polynomial Kernel for Funnel Arc Deletion Set

Marcelo Garlet Milani

Technische Universität Berlin

January 24, 2020

Definitions

Known Results

Kernel

Conclusion

DIRECTED FEEDBACK ARC SET

Let D be a digraph and $k \in \mathbb{N}$. DIRECTED FEEDBACK ARC SET (DFAS)

Is there some $A' \subseteq A(D)$ such that D - A' is a directed acyclic graph (DAG) and $|A'| \leq k$?

DIRECTED FEEDBACK ARC SET

Definitions

Let *D* be a digraph and $k \in \mathbb{N}$. DIRECTED FEEDBACK ARC SET (DFAS)

Is there some $A' \subseteq A(D)$ such that D - A' is a directed acyclic graph (DAG) and $|A'| \leq k$?

Let *D* be a digraph, *C* a class of (acyclic) digraphs and $k \in \mathbb{N}$. *C*-ARC DELETION SET (*C*-ADS)

Is there some $A' \subseteq A(D)$ such that $D - A' \in C$ and $|A'| \leq k$?

Let *D* be a digraph, *C* a class of (acyclic) digraphs and $k \in \mathbb{N}$. *C*-ARC DELETION SET (*C*-ADS)

Is there some $A' \subseteq A(D)$ such that $D - A' \in C$ and $|A'| \leq k$?

Example for OUT-FOREST-ADS.

Funnels

Definition (Funnel)

A DAG *D* is a funnel if for every source-sink path *P* there is some arc $a \in A(P)$ such that Q = P for any source-sink path *Q* containing *a*.

Funnels

Definition (Funnel)

A DAG *D* is a funnel if for every source-sink path *P* there is some arc $a \in A(P)$ such that Q = P for any source-sink path *Q* containing *a*.

A funnel

Funnels

Definition (Funnel) A DAG D is a funnel if for every source-sink path P there is some arc $a \in A(P)$ such that Q = P for any source-sink path Q containing a. A funnel Not a funnel

Forbidden Butterfly-Minor

A DAG is a funnel if and only if it does not contain the following as a butterfly minor.

Partitioning

- A DAG D is a funnel if and only if $V(D) = F \uplus M$ such that
- 1. D[F] is an out-forest,
- 2. D[M] is an in-forest, and 3. $M \times F \cap A(D) = \emptyset$.

Definitions

Definitions

Known Results

Kernel

Conclusion

- There is a $\mathcal{O}(4^k k^4 nm)$ time algorithm for DFAS/DFVS.¹
- DFVS admits a polynomial kernel when parameterized by k and the size of a treewidth- η modulator (for constant η).²

¹J. Chen, Y. Liu, S. Lu, B. O'Sullivan., I. Razgon. *A fixed-parameter algorithm for the directed feedback vertex set problem*. 2008. ²D. Lokshtanov, M. S. Ramanujan, S. Saurabh, R. Sharma, M. Zehavi. *Wannabe bounded treewidth graphs admit a polynomial kernel for DFVS*. 2019.

M. G. Milani

- OUT-FOREST-ADS and PUMPKIN-ADS can be solved in polynomial time.³
- OUT-FOREST-VDS and PUMPKIN-VDS are NP-hard and admit polynomial kernels wrt. solution size.³

³M. Mnich and E. J. van Leeuwen. *Polynomial kernels for deletion to classes of acyclic digraphs.* 2017.

⁴F. V. Fomin, P. A. Golovach, D. M. Thilikos. *On the Parameterized Complexity of Graph Modification to First-Order Logic Properties*. 2020

M. G. Milani

- OUT-FOREST-ADS and PUMPKIN-ADS can be solved in polynomial time.³
- OUT-FOREST-VDS and PUMPKIN-VDS are NP-hard and admit polynomial kernels wrt. solution size.³
- C-ADS admits a polynomial kernel if C "can be described by a simple first-order logic formula".⁴

³M. Mnich and E. J. van Leeuwen. *Polynomial kernels for deletion to classes of acyclic digraphs*. 2017.

⁴F. V. Fomin, P. A. Golovach, D. M. Thilikos. *On the Parameterized Complexity of Graph Modification to First-Order Logic Properties*. 2020

- FUNNEL-ADS is NP-hard even if the input is a DAG.⁵
- FUNNEL-ADS is in FPT wrt k.⁵

⁵M. G. M., H. Molter, R. Niedermeier, and M. Sorge. *Efficient algorithms*

for measuring the funnel-likeness of DAGs. 2018.

- FUNNEL-ADS is NP-hard even if the input is a DAG.⁵
- FUNNEL-ADS is in FPT wrt k.⁵
- Compare: OUT-FOREST-ADS and PUMPKIN-ADS can be solved in polynomial time.

⁵M. G. M., H. Molter, R. Niedermeier, and M. Sorge. *Efficient algorithms for measuring the funnel-likeness of DAGs.* 2018.

- FUNNEL-ADS is NP-hard even if the input is a DAG.⁵
- FUNNEL-ADS is in FPT wrt k.⁵
- Compare: OUT-FOREST-ADS and PUMPKIN-ADS can be solved in polynomial time.

Theorem

FUNNEL-ADS admits a kernel with $\mathcal{O}(k^6)$ many vertices and $\mathcal{O}(k^7)$ many arcs, computable in $\mathcal{O}(n+m)$ time.

⁵M. G. M., H. Molter, R. Niedermeier, and M. Sorge. *Efficient algorithms for measuring the funnel-likeness of DAGs*. 2018.

Definitions

Known Results

Kernel

Conclusion

M. G. Milani

Kernel

Let *D* be a digraph, $\ell : V(D) \to \{F, M\}$ a (partial) labeling of the vertices and $k \in \mathbb{N}$.

FUNNEL ARC DELETION LABELING (FADL)

Is there some $A' \subseteq A(D)$ and some $\hat{\ell} \supseteq \ell$ such that $\hat{\ell}$ is a *funnel labeling* for D - A' and $|A'| \le k$?

Kernel

Let *D* be a digraph, $\ell : V(D) \to \{F, M\}$ a (partial) labeling of the vertices and $k \in \mathbb{N}$.

FUNNEL ARC DELETION LABELING (FADL)

Is there some $A' \subseteq A(D)$ and some $\hat{\ell} \supseteq \ell$ such that $\hat{\ell}$ is a *funnel labeling* for D - A' and $|A'| \leq k$?

If there are more than 2k vertices with both in- and outdegree greater than 1, reject the input.

- 1. Label with ${\rm F}$ every source vertex.
- 2. Label with M every sink vertex.

- 1. Label with ${\rm F}$ every source vertex.
- 2. Label with M every sink vertex.

- 1. Label with F every source vertex.
- 2. Label with M every sink vertex.
- 3. Label with F every vertex with outdegree > k + 1.
- 4. Label with M every vertex with indegree > k + 1.

- 1. Label with F every source vertex.
- 2. Label with M every sink vertex.
- 3. Label with F every vertex with outdegree > k + 1.
- 4. Label with M every vertex with indegree > k + 1.

Overview

Overview

Overview

Kernel

Reduction Rule (shift neighbors)

Let u, v, w be a path of unlabeled vertices such that all of them have indegree one.

We can "shift" a neighbor x of v "backwards" if it is not a neighbor of u.

Reduction Rule (shift neighbors)

Let u, v, w be a path of unlabeled vertices such that all of them have indegree one. We can "shift" a neighbor x of v "backwards" if it is not a

neighbor of *u*.

Kernel

1. we can shift some vertex backwards in the path, or

- 1. we can shift some vertex backwards in the path, or
- there is a long subpath of *P* where every vertex also has outdegree one (and we can contract it), or

- 1. we can shift some vertex backwards in the path, or
- there is a long subpath of P where every vertex also has outdegree one (and we can contract it), or
- 3. some $u \in V(P)$ has many neighbors (and we can label u), or

- 1. we can shift some vertex backwards in the path, or
- there is a long subpath of *P* where every vertex also has outdegree one (and we can contract it), or
- 3. some $u \in V(P)$ has many neighbors (and we can label u), or
- 4. *P* is short.

With an additional reduction rule, we can prove the following.

Lemma

Let D be a reduced digraph. Then there are $\mathcal{O}(k^5)$ unlabeled vertices with in- or outdegree one.

With an additional reduction rule, we can prove the following.

Lemma

Let D be a reduced digraph. Then there are $\mathcal{O}(k^5)$ unlabeled vertices with in- or outdegree one.

Corollary

There are $\mathcal{O}(k^6)$ labeled vertices with unlabeled neighbors.

Remove (v, u) if v, u have different labels. Further, set k :=

Remove (v, u) if v, u have different labels. Further, set k :=

Remove (v, u) if v, u have different labels. Further, set k :=

Remove (v, u) if v, u have different labels. Further, set k :=

Remove (v, u) if v, u have different labels. Further, set k :=

With two additional reduction rules we can show the following.

<u>L</u>emma

There are $\mathcal{O}(k)$ labeled vertices with in- or outdegree at most one whose entire neighborhood is also labeled.

Kernel

With two additional reduction rules we can show the following.

<u>L</u>emma

There are $\mathcal{O}(k)$ labeled vertices with in- or outdegree at most one whose entire neighborhood is also labeled.

Putting together previous statements :

FADL admits a problem kernel with $\mathcal{O}(k^6)$ vertices and $\mathcal{O}(k^6)$ arcs.

FADL admits a problem kernel with $\mathcal{O}(k^6)$ vertices and $\mathcal{O}(k^6)$ arcs.

And with a simple reduction from ${\rm FADL}$ to ${\rm FADS}$ (and with a running-time analysis), we obtain:

Theorem

FADS admits a problem kernel with $\mathcal{O}(k^6)$ vertices and $\mathcal{O}(k^7)$ arcs, computable in $\mathcal{O}(n+m)$ time.

Definitions

Known Results

Kernel

Conclusion

• What about a polynomial kernel for FUNNEL VERTEX DELETION SET?

- What about a polynomial kernel for FUNNEL VERTEX DELETION SET?
- What would be sufficient conditions for a digraph class C that guarentee that C-ADS admits a polynomial kernel?
 - Do characterizations over partitions and forbidden substructures help?

- What about a polynomial kernel for FUNNEL VERTEX DELETION SET?
- What would be sufficient conditions for a digraph class C that guarentee that C-ADS admits a polynomial kernel?
 - Do characterizations over partitions and forbidden substructures help?
- For which pairs of digraph classes C and D the problems DIRECTED FEEDBACK ARC SET and C-ADS are the same when the input digraph D is in D?
 - Trivial if \mathcal{D} is closed under arc deletion and $\mathcal{C} = \mathcal{D} \cap \mathsf{DAGs}$.

- What about a polynomial kernel for FUNNEL VERTEX DELETION SET?
- What would be sufficient conditions for a digraph class C that guarentee that C-ADS admits a polynomial kernel?
 - Do characterizations over partitions and forbidden substructures help?
- For which pairs of digraph classes C and D the problems DIRECTED FEEDBACK ARC SET and C-ADS are the same when the input digraph D is in D?
 - Trivial if \mathcal{D} is closed under arc deletion and $\mathcal{C} = \mathcal{D} \cap \mathsf{DAGs}$.

Thank you.