
Constructing Large k-cores in Low
Degeneracy Graphs

Fedor Fomin1 Danil Sagunov2 Kirill Simonov1

1University of Bergen

2St. Petersburg Department of Steklov Mathematical
Institute

Bergen, 24th January 2020

Social network unraveling

A user is active if at least k of their connections
are active

The k-core is the maximal induced subgraph
where degree of each vertex is at least k

Social network unraveling

A user is active if at least k of their connections
are active

The k-core is the maximal induced subgraph
where degree of each vertex is at least k

Social network unraveling

A user is active if at least k of their connections
are active

The k-core is the maximal induced subgraph
where degree of each vertex is at least k

Social network unraveling

A user is active if at least k of their connections
are active

The k-core is the maximal induced subgraph
where degree of each vertex is at least k

Social network unraveling

A user is active if at least k of their connections
are active
The k-core is the maximal induced subgraph
where degree of each vertex is at least k

Strengthening a network

Want to prevent the unraveling

Create connections to obtain a large k-core

Edge k-Core : Can we add at most b edges
so that the k-core size is at least p?

Strengthening a network

Want to prevent the unraveling
Create connections to obtain a large k-core

Edge k-Core : Can we add at most b edges
so that the k-core size is at least p?

Strengthening a network

Want to prevent the unraveling
Create connections to obtain a large k-core

Edge k-Core : Can we add at most b edges
so that the k-core size is at least p?

Example

Fix the vertex set of the 3-core H of size at least
p = 6
Add at most b = 2 edges inside H so that
degrees are ≥ k = 3

Example

Fix the vertex set of the 3-core H of size at least
p = 6

Add at most b = 2 edges inside H so that
degrees are ≥ k = 3

Example

Fix the vertex set of the 3-core H of size at least
p = 6
Add at most b = 2 edges inside H so that
degrees are ≥ k = 3

Previous work on Edge k-Core

[Chitnis and Talmon 2018]
NP-complete when k = 3, even for 2-degenerate
graphs

W[1]-hard parameterized by k + b + p
(no f (k + b + p) · n𝒪(1) algorithm)
Solvable in time (k + tw)𝒪(tw+b) · n𝒪(1) when
treewidth is tw
[Zhou et al. 2019] APX-hard to maximize p

Previous work on Edge k-Core

[Chitnis and Talmon 2018]
NP-complete when k = 3, even for 2-degenerate
graphs
W[1]-hard parameterized by k + b + p
(no f (k + b + p) · n𝒪(1) algorithm)

Solvable in time (k + tw)𝒪(tw+b) · n𝒪(1) when
treewidth is tw
[Zhou et al. 2019] APX-hard to maximize p

Previous work on Edge k-Core

[Chitnis and Talmon 2018]
NP-complete when k = 3, even for 2-degenerate
graphs
W[1]-hard parameterized by k + b + p
(no f (k + b + p) · n𝒪(1) algorithm)
Solvable in time (k + tw)𝒪(tw+b) · n𝒪(1) when
treewidth is tw

[Zhou et al. 2019] APX-hard to maximize p

Previous work on Edge k-Core

[Chitnis and Talmon 2018]
NP-complete when k = 3, even for 2-degenerate
graphs
W[1]-hard parameterized by k + b + p
(no f (k + b + p) · n𝒪(1) algorithm)
Solvable in time (k + tw)𝒪(tw+b) · n𝒪(1) when
treewidth is tw
[Zhou et al. 2019] APX-hard to maximize p

Our results on Edge k-Core

𝒪(k · |V (G)|2) when G is a forest

FPT parameterized by tw + k
Compared to tw + k + b by Chitnis and Talmon
FPT parameterized by vertex cover, k is
arbitrary
There is no poly kernel parameterized by
vc + k + b + p, unless PH = Σ3

p

Our results on Edge k-Core

𝒪(k · |V (G)|2) when G is a forest
FPT parameterized by tw + k

Compared to tw + k + b by Chitnis and Talmon
FPT parameterized by vertex cover, k is
arbitrary
There is no poly kernel parameterized by
vc + k + b + p, unless PH = Σ3

p

Our results on Edge k-Core

𝒪(k · |V (G)|2) when G is a forest
FPT parameterized by tw + k
Compared to tw + k + b by Chitnis and Talmon
FPT parameterized by vertex cover, k is
arbitrary
There is no poly kernel parameterized by
vc + k + b + p, unless PH = Σ3

p

Deficiency

dfG (v) = max{0, k − degG (v)}, the deficiency
of v in G : How many edges do we lack in each
vertex

0

1

0

0 2

2

The total deficiency df(G) =
∑︀

v∈V (G) dfG (v)

We need at least ⌈df(G)/2⌉ edges

Deficiency

dfG (v) = max{0, k − degG (v)}, the deficiency
of v in G : How many edges do we lack in each
vertex

0

1

0

0 2

2

The total deficiency df(G) =
∑︀

v∈V (G) dfG (v)

We need at least ⌈df(G)/2⌉ edges

Good and bad edges

0

0

1

1

0

0

2

0

A good edge lowers deficiency by 2, a bad by 1
Nice when G could be completed optimally,
using exactly ⌈df(G)/2⌉ edges

Good and bad edges

0

0

1

1

0

0

2

0

Good Bad

A good edge lowers deficiency by 2, a bad by 1

Nice when G could be completed optimally,
using exactly ⌈df(G)/2⌉ edges

Good and bad edges

0

0

1

1

0

0

2

0

Good Bad

A good edge lowers deficiency by 2, a bad by 1
Nice when G could be completed optimally,
using exactly ⌈df(G)/2⌉ edges

Forests

Theorem
For any k , any forest T on ≥ k + 1 vertices can be
completed to a graph of minimum degree k by
adding at most ⌈df(T)/2⌉edges, and in the case
k ≥ 4 these edges form a connected subgraph.

Allows to keep track of deficiency only
Dynamic programming in time 𝒪(k · |V (T)|2)

Forests

Theorem
For any k , any forest T on ≥ k + 1 vertices can be
completed to a graph of minimum degree k by
adding at most ⌈df(T)/2⌉edges, and in the case
k ≥ 4 these edges form a connected subgraph.

Allows to keep track of deficiency only
Dynamic programming in time 𝒪(k · |V (T)|2)

Dynamic Programming

Find H ⊂ V (T) s.t.
|H | ≥ p, df(G [H]) ≤ 2b

DP on subtrees
Store

how many vertices taken
inside,
their total deficiency,
whether the root is
taken and how many
neighbors of the root are
taken inside

Dynamic Programming

Find H ⊂ V (T) s.t.
|H | ≥ p, df(G [H]) ≤ 2b
DP on subtrees

Store
how many vertices taken
inside,
their total deficiency,
whether the root is
taken and how many
neighbors of the root are
taken inside

v

Dynamic Programming

Find H ⊂ V (T) s.t.
|H | ≥ p, df(G [H]) ≤ 2b
DP on subtrees
Store

how many vertices taken
inside,
their total deficiency,
whether the root is
taken and how many
neighbors of the root are
taken inside

v

0

22

Proof of the Theorem: Warmup, k = 1

Theorem
For any k , any forest T on ≥ k + 1 vertices can be
completed to a graph of minimum degree k by
adding at most ⌈df(T)/2⌉edges, and in the case
k ≥ 4 these edges form a connected subgraph.

Proof of the Theorem: Warmup, k = 1

Theorem
For any k , any forest T on ≥ k + 1 vertices can be
completed to a graph of minimum degree k by
adding at most ⌈df(T)/2⌉edges, and in the case
k ≥ 4 these edges form a connected subgraph.

Proof of the Theorem: Warmup, k = 1

Theorem
For any k , any forest T on ≥ k + 1 vertices can be
completed to a graph of minimum degree k by
adding at most ⌈df(T)/2⌉edges, and in the case
k ≥ 4 these edges form a connected subgraph.

Proof of the Theorem: Warmup, k = 1

Theorem
For any k , any forest T on ≥ k + 1 vertices can be
completed to a graph of minimum degree k by
adding at most ⌈df(T)/2⌉edges, and in the case
k ≥ 4 these edges form a connected subgraph.

Proof of the Theorem

Theorem
For any k , any forest T on ≥ k + 1 vertices can be
completed to a graph of minimum degree k by
adding at most ⌈df(T)/2⌉edges, and in the case
k ≥ 4 these edges form a connected subgraph.

Enough to consider trees

k = 2: Arbitrary matching on the leaves

Proof of the Theorem

Theorem
For any k , any forest T on ≥ k + 1 vertices can be
completed to a graph of minimum degree k by
adding at most ⌈df(T)/2⌉edges, and in the case
k ≥ 4 these edges form a connected subgraph.

Enough to consider trees

k = 2: Arbitrary matching on the leaves

Proof of the Theorem

Theorem
For any k , any forest T on ≥ k + 1 vertices can be
completed to a graph of minimum degree k by
adding at most ⌈df(T)/2⌉edges, and in the case
k ≥ 4 these edges form a connected subgraph.

Enough to consider trees

k = 2: Arbitrary matching on the leaves

Proof of the Theorem

Theorem
For any k , any forest T on ≥ k + 1 vertices can be
completed to a graph of minimum degree k by
adding at most ⌈df(T)/2⌉edges, and in the case
k ≥ 4 these edges form a connected subgraph.

Enough to consider trees

k = 2: Arbitrary matching on the leaves

Proof of the Theorem

Theorem
For any k , any forest T on ≥ k + 1 vertices can be
completed to a graph of minimum degree k by
adding at most ⌈df(T)/2⌉edges, and in the case
k ≥ 4 these edges form a connected subgraph.

Enough to consider trees

k = 2: Arbitrary matching on the leaves

Proof of the Theorem

Proof by induction on |T |
Base case: |T | = k + 1,
complete to a clique

Step: Take away a leaf v
A is the graph of added
edges
Find a large matching in
A, roughly k/2
Reroute to v

v

Proof of the Theorem

Proof by induction on |T |
Base case: |T | = k + 1,
complete to a clique
Step: Take away a leaf v

A is the graph of added
edges
Find a large matching in
A, roughly k/2
Reroute to v

v

Proof of the Theorem

Proof by induction on |T |
Base case: |T | = k + 1,
complete to a clique
Step: Take away a leaf v
A is the graph of added
edges

Find a large matching in
A, roughly k/2
Reroute to v

v

A

Proof of the Theorem

Proof by induction on |T |
Base case: |T | = k + 1,
complete to a clique
Step: Take away a leaf v
A is the graph of added
edges
Find a large matching in
A, roughly k/2

Reroute to v

v

A

Proof of the Theorem

Proof by induction on |T |
Base case: |T | = k + 1,
complete to a clique
Step: Take away a leaf v
A is the graph of added
edges
Find a large matching in
A, roughly k/2
Reroute to v

v

A

Cases for rerouting

pu

v

p

v

u p

v

Theorem (Henning and Yeo, 2018)

For any integer t ≥ 3, any connected graph G with
|V (G)| = n, |E (G)| = m and ∆(G) ≤ t, contains a
matching of size at least(︂

t − 1
t(t2 − 3)

)︂
n +

(︂
t2 − t − 2
t(t2 − 3)

)︂
m − t − 1

t(t2 − 3)
,

if t is odd, or at least

n

t(t + 1)
+

m

t + 1
− 1

t
, if t is even.

Large deficiency is optimal

Lemma
For any integer k ≥ 2, any graph G with
df(G) ≥ 3k3 can be completed to a graph of
minimum degree k optimally.

Connect arbitrarily two vertices with non-zero
deficiency
When a vertex v is left, can replace (u,w) by
(u, v) and (w , v) if u and w are not neighbors
of v
deg(v) ≤ k , so there are many enough edges
among the added

Large deficiency is optimal

Lemma
For any integer k ≥ 2, any graph G with
df(G) ≥ 3k3 can be completed to a graph of
minimum degree k optimally.

Connect arbitrarily two vertices with non-zero
deficiency
When a vertex v is left, can replace (u,w) by
(u, v) and (w , v) if u and w are not neighbors
of v
deg(v) ≤ k , so there are many enough edges
among the added

Treewidth algorithm

If b ≤ 3k3, run the (k + tw)𝒪(tw+b) · n𝒪(1)

algorithm

If b > 3k3, use DP on tree decomposition to
find large enough H with the smallest deficiency
d

If b ≥ ⌈d/2⌉, we report YES by Lemma
Otherwise report NO since the smallest
deficiency is too large

Treewidth algorithm

If b ≤ 3k3, run the (k + tw)𝒪(tw+b) · n𝒪(1)

algorithm
If b > 3k3, use DP on tree decomposition to
find large enough H with the smallest deficiency
d

If b ≥ ⌈d/2⌉, we report YES by Lemma
Otherwise report NO since the smallest
deficiency is too large

Treewidth algorithm

If b ≤ 3k3, run the (k + tw)𝒪(tw+b) · n𝒪(1)

algorithm
If b > 3k3, use DP on tree decomposition to
find large enough H with the smallest deficiency
d

If b ≥ ⌈d/2⌉, we report YES by Lemma
Otherwise report NO since the smallest
deficiency is too large

Edge k-Core parameterized by vc

Fix vertices and edges
of C
I is partitioned into
classes by edges to C

ILP, introduce variables
yd ,d ′ for the number of
vertices going from d
to d ′ after adding edges
to C

C I

Edge k-Core parameterized by vc

Fix vertices and edges
of C

I is partitioned into
classes by edges to C

ILP, introduce variables
yd ,d ′ for the number of
vertices going from d
to d ′ after adding edges
to C

C I

Edge k-Core parameterized by vc

Fix vertices and edges
of C
I is partitioned into
classes by edges to C

ILP, introduce variables
yd ,d ′ for the number of
vertices going from d
to d ′ after adding edges
to C

C I

x1 = 1

x2 = 1

x3 = 2

Edge k-Core parameterized by vc

Fix vertices and edges
of C
I is partitioned into
classes by edges to C

ILP, introduce variables
yd ,d ′ for the number of
vertices going from d
to d ′ after adding edges
to C

C I

x1 = 1

x2 = 1

x3 = 2

y3,1

Edges from I to C are fixed, additionally fix the
bad edges
For each deficiency d ∈ [k − |C |, k] we have a
variable for the number of corresponding vertices
A modification of the Erdős-Gallai theorem
verifies whether there exists a graph with these
degrees

Theorem (Erdős and Gallai, 1960)

A sequence of non-negative integers
d1 ≥ d2 ≥ . . . ≥ dn is graphic if and only if

∑︀n
i=1 di

is even and for each t ∈ [n] holds

t∑︁
i=1

di ≤ t · (t − 1) +
n∑︁

j=t+1

min{dj , t}.

Open quiestions

Could Edge k-Core be solved efficiently on
other graph classes?

Is there other meaningful ways to enforce a large
k-core?

Thanks for attention!

Open quiestions

Could Edge k-Core be solved efficiently on
other graph classes?
Is there other meaningful ways to enforce a large
k-core?

Thanks for attention!

Open quiestions

Could Edge k-Core be solved efficiently on
other graph classes?
Is there other meaningful ways to enforce a large
k-core?

Thanks for attention!

