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Previous work on Edge k-Core

[Chitnis and Talmon 2018]
NP-complete when k = 3, even for 2-degenerate
graphs

W[1]-hard parameterized by k + b + p
(no f (k + b + p) · n𝒪(1) algorithm)
Solvable in time (k + tw)𝒪(tw+b) · n𝒪(1) when
treewidth is tw
[Zhou et al. 2019] APX-hard to maximize p
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Deficiency

dfG (v) = max{0, k − degG (v)}, the deficiency
of v in G : How many edges do we lack in each
vertex
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Theorem
For any k , any forest T on ≥ k + 1 vertices can be
completed to a graph of minimum degree k by
adding at most ⌈df(T )/2⌉edges, and in the case
k ≥ 4 these edges form a connected subgraph.

Allows to keep track of deficiency only
Dynamic programming in time 𝒪(k · |V (T )|2)
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Find H ⊂ V (T ) s.t.
|H | ≥ p, df(G [H]) ≤ 2b

DP on subtrees
Store

how many vertices taken
inside,
their total deficiency,
whether the root is
taken and how many
neighbors of the root are
taken inside
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Proof of the Theorem

Proof by induction on |T |
Base case: |T | = k + 1,
complete to a clique

Step: Take away a leaf v
A is the graph of added
edges
Find a large matching in
A, roughly k/2
Reroute to v

v



Proof of the Theorem

Proof by induction on |T |
Base case: |T | = k + 1,
complete to a clique
Step: Take away a leaf v

A is the graph of added
edges
Find a large matching in
A, roughly k/2
Reroute to v

v



Proof of the Theorem

Proof by induction on |T |
Base case: |T | = k + 1,
complete to a clique
Step: Take away a leaf v
A is the graph of added
edges

Find a large matching in
A, roughly k/2
Reroute to v

v

A



Proof of the Theorem

Proof by induction on |T |
Base case: |T | = k + 1,
complete to a clique
Step: Take away a leaf v
A is the graph of added
edges
Find a large matching in
A, roughly k/2

Reroute to v

v

A



Proof of the Theorem

Proof by induction on |T |
Base case: |T | = k + 1,
complete to a clique
Step: Take away a leaf v
A is the graph of added
edges
Find a large matching in
A, roughly k/2
Reroute to v

v

A



Cases for rerouting

pu
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u p
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Theorem (Henning and Yeo, 2018)

For any integer t ≥ 3, any connected graph G with
|V (G )| = n, |E (G )| = m and ∆(G ) ≤ t, contains a
matching of size at least(︂

t − 1
t(t2 − 3)

)︂
n +

(︂
t2 − t − 2
t(t2 − 3)

)︂
m − t − 1

t(t2 − 3)
,

if t is odd, or at least

n

t(t + 1)
+

m

t + 1
− 1

t
, if t is even.



Large deficiency is optimal

Lemma
For any integer k ≥ 2, any graph G with
df(G ) ≥ 3k3 can be completed to a graph of
minimum degree k optimally.

Connect arbitrarily two vertices with non-zero
deficiency
When a vertex v is left, can replace (u,w) by
(u, v) and (w , v) if u and w are not neighbors
of v
deg(v) ≤ k , so there are many enough edges
among the added
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Treewidth algorithm

If b ≤ 3k3, run the (k + tw)𝒪(tw+b) · n𝒪(1)

algorithm

If b > 3k3, use DP on tree decomposition to
find large enough H with the smallest deficiency
d

If b ≥ ⌈d/2⌉, we report YES by Lemma
Otherwise report NO since the smallest
deficiency is too large
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ILP, introduce variables
yd ,d ′ for the number of
vertices going from d
to d ′ after adding edges
to C

C I
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Edges from I to C are fixed, additionally fix the
bad edges
For each deficiency d ∈ [k − |C |, k] we have a
variable for the number of corresponding vertices
A modification of the Erdős-Gallai theorem
verifies whether there exists a graph with these
degrees

Theorem (Erdős and Gallai, 1960)

A sequence of non-negative integers
d1 ≥ d2 ≥ . . . ≥ dn is graphic if and only if

∑︀n
i=1 di

is even and for each t ∈ [n] holds

t∑︁
i=1

di ≤ t · (t − 1) +
n∑︁

j=t+1

min{dj , t}.



Open quiestions

Could Edge k-Core be solved efficiently on
other graph classes?

Is there other meaningful ways to enforce a large
k-core?

Thanks for attention!
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