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m A user is active if at least k of their connections
are active

m The k-core is the maximal induced subgraph
where degree of each vertex is at least k
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Strengthening a network

m Want to prevent the unraveling
m Create connections to obtain a large k-core

m EDGE k-CORE : Can we add at most b edges
so that the k-core size is at least p?
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Example

m Fix the vertex set of the 3-core H of size at least
p=2©6

m Add at most b = 2 edges inside H so that
degrees are > k =3
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Previous work on EDGE k-CORE

[Chitnis and Talmon 2018]
m NP-complete when k = 3, even for 2-degenerate
graphs
m W/[1]-hard parameterized by k+b+p
(no f(k + b+ p) - n°Y) algorithm)

m Solvable in time (k + tw)P(tW+b) . nO1) when
treewidth is tw

m [Zhou et al. 2019] APX-hard to maximize p
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Our results on EDGE k-CORE

m O(k - |V(G)]?) when G is a forest

m FPT parameterized by tw + k
Compared to tw + k + b by Chitnis and Talmon

m FPT parameterized by vertex cover, k is
arbitrary
There is no poly kernel parameterized by
vc+ k + b+ p, unless PH = 2,3,
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m dfg(v) = max{0, kK — deg;(v)}, the deficiency
of v in G: How many edges do we lack in each
vertex

0 0 2

1 0 2

m The total deficiency df(G) = >_,cy(g) dfc(v)
We need at least [df(G)/2] edges



Good and bad edges

0 1 0 2

AN

0 1 0 0



Good and bad edges

Good Bad

m A good edge lowers deficiency by 2, a bad by 1



Good and bad edges

Good Bad

m A good edge lowers deficiency by 2, a bad by 1

m Nice when G could be completed optimally,
using exactly [df(G)/2] edges



Forests

Theorem

For any k, any forest T on > k + 1 vertices can be
completed to a graph of minimum degree k by
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Forests

Theorem

For any k, any forest T on > k + 1 vertices can be
completed to a graph of minimum degree k by
adding at most [df(T)/2]edges, and in the case

k > 4 these edges form a connected subgraph.

m Allows to keep track of deficiency only
m Dynamic programming in time O(k - |V/(T)[?)
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Dynamic Programming

m Find HC V(T) st
H| > p, df(G[H]) < 2b

m DP on subtrees

m Store

m how many vertices taken
inside, /

m their total deficiency, \

m whether the root is N
taken and how many R Pl
neighbors of the root are
taken inside
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Proof of the Theorem

Proof by induction on |T|

Base case: |T| =k +1,
complete to a clique

Step: Take away a leaf v

A is the graph of added
edges

Find a large matching in
A, roughly k/2

Reroute to v



Cases for rerouting



Theorem (Henning and Yeo, 2018)

For any integer t > 3, any connected graph G with
|V(G)| =n, |[E(G)] = mand A(G) < t, contains a
matching of size at least

if tis odd, or at least

L, if ti
— —, | IS even.
t(t+1) t+1 t
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Lemma
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minimum degree k optimally.



Large deficiency is optimal

Lemma

For any integer k > 2, any graph G with
df(G) > 3k3 can be completed to a graph of
minimum degree k optimally.

m Connect arbitrarily two vertices with non-zero
deficiency

m When a vertex v is left, can replace (u, w) by
(u,v) and (w,v) if u and w are not neighbors
of v

m deg(v) < k, so there are many enough edges
among the added
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Treewidth algorithm

m If b <3k3 run the (k + tw)o(tw+b) . n©)
algorithm

m If b > 3k3, use DP on tree decomposition to

find large enough H with the smallest deficiency
d

m If b> [d/2], we report YES by Lemma

m Otherwise report NO since the smallest
deficiency is too large



EDGE k-CORE parameterized by vc



EDGE k-CORE parameterized by vc

m Fix vertices and edges
of C



EDGE k-CORE parameterized by vc

m Fix vertices and edges
m / is partitioned into
classes by edges to C




EDGE k-CORE parameterized by vc

m Fix vertices and edges

m / is partitioned into
classes by edges to C

m ILP, introduce variables
Yd,q for the number of
vertices going from d
to d’ after adding edges
to C




m Edges from [ to C are fixed, additionally fix the
bad edges

m For each deficiency d € [k — |C|, k] we have a
variable for the number of corresponding vertices

m A modification of the Erdés-Gallai theorem
verifies whether there exists a graph with these
degrees

Theorem (Erdés and Gallai, 1960)

A sequence of non-negative integers
dy > dy > ... >d,is graphic if and only if -7, d;
is even and for each t € [n] holds

Zd <t-(t—1)+ Z min{d;, t}.

Jj=t+1
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Open quiestions

m Could EDGE k-CORE be solved efficiently on
other graph classes?

m Is there other meaningful ways to enforce a large
k-core?

Thanks for attention!



