Constructing Large k-cores in Low Degeneracy Graphs

Fedor Fomin ${ }^{1}$ Danil Sagunov ${ }^{2}$ Kirill Simonov ${ }^{1}$
${ }^{1}$ University of Bergen
${ }^{2}$ St. Petersburg Department of Steklov Mathematical
Bergen, 24th January 2020

Social network unraveling

- A user is active if at least k of their connections are active

Social network unraveling

- A user is active if at least k of their connections are active

Social network unraveling

- A user is active if at least k of their connections are active

Social network unraveling

- A user is active if at least k of their connections are active

Social network unraveling

■ A user is active if at least k of their connections are active

- The k-core is the maximal induced subgraph where degree of each vertex is at least k

Strengthening a network

■ Want to prevent the unraveling

Strengthening a network

- Want to prevent the unraveling

■ Create connections to obtain a large k-core

Strengthening a network

- Want to prevent the unraveling

■ Create connections to obtain a large k-core

- Edge k-Core : Can we add at most b edges so that the k-core size is at least p ?

Example

Example

- Fix the vertex set of the 3 -core H of size at least $p=6$

Example

■ Fix the vertex set of the 3 -core H of size at least $p=6$
■ Add at most $b=2$ edges inside H so that degrees are $\geq k=3$

Previous work on EDGE k-Core

[Chitnis and Talmon 2018]

- NP-complete when $k=3$, even for 2-degenerate graphs

Previous work on EDGE k-CORE

[Chitnis and Talmon 2018]
■ NP-complete when $k=3$, even for 2-degenerate graphs
■ W[1]-hard parameterized by $k+b+p$ (no $f(k+b+p) \cdot n^{\mathcal{O}(1)}$ algorithm)

Previous work on EDGE k-CORE

[Chitnis and Talmon 2018]
■ NP-complete when $k=3$, even for 2-degenerate graphs
■ W[1]-hard parameterized by $k+b+p$ (no $f(k+b+p) \cdot n^{\mathcal{O}(1)}$ algorithm)

- Solvable in time $(k+\mathrm{tw})^{\mathcal{O}(\mathrm{tw}+b)} \cdot n^{\mathcal{O}(1)}$ when treewidth is tw

Previous work on EDGE k-CORE

[Chitnis and Talmon 2018]
■ NP-complete when $k=3$, even for 2-degenerate graphs
■ W[1]-hard parameterized by $k+b+p$ (no $f(k+b+p) \cdot n^{\mathcal{O}(1)}$ algorithm)

- Solvable in time $(k+\mathrm{tw})^{\mathcal{O}(\mathrm{tw}+b)} \cdot n^{\mathcal{O}(1)}$ when treewidth is tw
- [Zhou et al. 2019] APX-hard to maximize p

Our results on EDGE k-Core

- $\mathcal{O}\left(k \cdot|V(G)|^{2}\right)$ when G is a forest

Our results on EDGE k-Core

- $\mathcal{O}\left(k \cdot|V(G)|^{2}\right)$ when G is a forest
- FPT parameterized by $\mathrm{tw}+k$

Our results on EDGE k-CORE

- $\mathcal{O}\left(k \cdot|V(G)|^{2}\right)$ when G is a forest
- FPT parameterized by tw $+k$

Compared to tw $+k+b$ by Chitnis and Talmon

- FPT parameterized by vertex cover, k is arbitrary
There is no poly kernel parameterized by $\mathrm{vc}+k+b+p$, unless $\mathrm{PH}=\Sigma_{p}^{3}$

Deficiency

$\square \operatorname{df}_{G}(v)=\max \left\{0, k-\operatorname{deg}_{G}(v)\right\}$, the deficiency of v in G : How many edges do we lack in each vertex

Deficiency

$\square \operatorname{df}_{G}(v)=\max \left\{0, k-\operatorname{deg}_{G}(v)\right\}$, the deficiency of v in G : How many edges do we lack in each vertex

- The total deficiency $\operatorname{df}(G)=\sum_{v \in V(G)} \operatorname{df}_{G}(v)$ We need at least $\lceil\operatorname{df}(G) / 2\rceil$ edges

Good and bad edges

Good and bad edges

Good
Bad
■ A good edge lowers deficiency by 2 , a bad by 1

Good and bad edges

Good
Bad

- A good edge lowers deficiency by 2 , a bad by 1

■ Nice when G could be completed optimally, using exactly $\lceil\operatorname{df}(G) / 2\rceil$ edges

Forests

Theorem

For any k, any forest T on $\geq k+1$ vertices can be completed to a graph of minimum degree k by adding at most $\lceil\mathrm{df}(T) / 2\rceil$ edges, and in the case $k \geq 4$ these edges form a connected subgraph.

Forests

Theorem

For any k, any forest T on $\geq k+1$ vertices can be completed to a graph of minimum degree k by adding at most $\lceil\mathrm{df}(T) / 2\rceil$ edges, and in the case $k \geq 4$ these edges form a connected subgraph.

- Allows to keep track of deficiency only
- Dynamic programming in time $\mathcal{O}\left(k \cdot|V(T)|^{2}\right)$

Dynamic Programming

■ Find $H \subset V(T)$ s.t.
$|H| \geq p, \operatorname{df}(G[H]) \leq 2 b$

Dynamic Programming

■ Find $H \subset V(T)$ s.t. $|H| \geq p, \operatorname{df}(G[H]) \leq 2 b$
■ DP on subtrees

Dynamic Programming

■ Find $H \subset V(T)$ s.t.

$$
|H| \geq p, \operatorname{df}(G[H]) \leq 2 b
$$

■ DP on subtrees
■ Store

- how many vertices taken inside,
- their total deficiency,
- whether the root is taken and how many
 neighbors of the root are taken inside

Proof of the Theorem: Warmup, $k=1$

Theorem

For any k, any forest T on $\geq k+1$ vertices can be completed to a graph of minimum degree k by adding at most $\lceil\operatorname{df}(T) / 2\rceil$ edges, and in the case $k \geq 4$ these edges form a connected subgraph.

Proof of the Theorem: Warmup, $k=1$

Theorem

For any k, any forest T on $\geq k+1$ vertices can be completed to a graph of minimum degree k by adding at most $\lceil\operatorname{df}(T) / 2\rceil$ edges, and in the case $k \geq 4$ these edges form a connected subgraph.

Proof of the Theorem: Warmup, $k=1$

Theorem

For any k, any forest T on $\geq k+1$ vertices can be completed to a graph of minimum degree k by adding at most $\lceil\mathrm{df}(T) / 2\rceil$ edges, and in the case $k \geq 4$ these edges form a connected subgraph.

Proof of the Theorem: Warmup, $k=1$

Theorem

For any k, any forest T on $\geq k+1$ vertices can be completed to a graph of minimum degree k by adding at most $\lceil\operatorname{df}(T) / 2\rceil$ edges, and in the case $k \geq 4$ these edges form a connected subgraph.

Proof of the Theorem

Theorem

For any k, any forest T on $\geq k+1$ vertices can be completed to a graph of minimum degree k by adding at most $\lceil\operatorname{df}(T) / 2\rceil$ edges, and in the case $k \geq 4$ these edges form a connected subgraph.

■ Enough to consider trees

Proof of the Theorem

Theorem

For any k, any forest T on $\geq k+1$ vertices can be completed to a graph of minimum degree k by adding at most $\lceil\operatorname{df}(T) / 2\rceil$ edges, and in the case $k \geq 4$ these edges form a connected subgraph.

■ Enough to consider trees

Proof of the Theorem

Theorem

For any k, any forest T on $\geq k+1$ vertices can be completed to a graph of minimum degree k by adding at most $\lceil\operatorname{df}(T) / 2\rceil$ edges, and in the case $k \geq 4$ these edges form a connected subgraph.

■ Enough to consider trees

■ $k=2$: Arbitrary matching on the leaves

Proof of the Theorem

Theorem

For any k, any forest T on $\geq k+1$ vertices can be completed to a graph of minimum degree k by adding at most $\lceil\operatorname{df}(T) / 2\rceil$ edges, and in the case $k \geq 4$ these edges form a connected subgraph.

■ Enough to consider trees

■ $k=2$: Arbitrary matching on the leaves

Proof of the Theorem

Theorem

For any k, any forest T on $\geq k+1$ vertices can be completed to a graph of minimum degree k by adding at most $\lceil\operatorname{df}(T) / 2\rceil$ edges, and in the case $k \geq 4$ these edges form a connected subgraph.

■ Enough to consider trees

■ $k=2$: Arbitrary matching on the leaves

Proof of the Theorem

- Proof by induction on $|T|$
- Base case: $|T|=k+1$, complete to a clique

Proof of the Theorem

- Proof by induction on $|T|$
- Base case: $|T|=k+1$, complete to a clique
- Step: Take away a leaf v

Proof of the Theorem

- Proof by induction on $|T|$
- Base case: $|T|=k+1$, complete to a clique
■ Step: Take away a leaf v
- A is the graph of added edges

Proof of the Theorem

- Proof by induction on $|T|$
- Base case: $|T|=k+1$, complete to a clique
- Step: Take away a leaf v
- A is the graph of added edges
- Find a large matching in

A, roughly $k / 2$

Proof of the Theorem

- Proof by induction on $|T|$
- Base case: $|T|=k+1$, complete to a clique
- Step: Take away a leaf v
- A is the graph of added edges
- Find a large matching in

A, roughly $k / 2$
■ Reroute to v

Cases for rerouting

Theorem (Henning and Yeo, 2018)

For any integer $t \geq 3$, any connected graph G with $|V(G)|=n,|E(G)|=m$ and $\Delta(G) \leq t$, contains a matching of size at least

$$
\left(\frac{t-1}{t\left(t^{2}-3\right)}\right) n+\left(\frac{t^{2}-t-2}{t\left(t^{2}-3\right)}\right) m-\frac{t-1}{t\left(t^{2}-3\right)}
$$

if t is odd, or at least

$$
\frac{n}{t(t+1)}+\frac{m}{t+1}-\frac{1}{t}, \text { if } t \text { is even. }
$$

Large deficiency is optimal

Lemma

For any integer $k \geq 2$, any graph G with $\operatorname{df}(G) \geq 3 k^{3}$ can be completed to a graph of minimum degree k optimally.

Large deficiency is optimal

Lemma

For any integer $k \geq 2$, any graph G with $\operatorname{df}(G) \geq 3 k^{3}$ can be completed to a graph of minimum degree k optimally.

- Connect arbitrarily two vertices with non-zero deficiency
- When a vertex v is left, can replace (u, w) by (u, v) and (w, v) if u and w are not neighbors of v
- $\operatorname{deg}(v) \leq k$, so there are many enough edges among the added

Treewidth algorithm

■ If $b \leq 3 k^{3}$, run the $(k+\mathrm{tw})^{\mathcal{O}(\mathrm{tw}+b)} \cdot n^{\mathcal{O}(1)}$ algorithm

Treewidth algorithm

■ If $b \leq 3 k^{3}$, run the $(k+\mathrm{tw})^{\mathcal{O}(\mathrm{tw}+b)} \cdot n^{\mathcal{O}(1)}$ algorithm
■ If $b>3 k^{3}$, use DP on tree decomposition to find large enough H with the smallest deficiency d

Treewidth algorithm

■ If $b \leq 3 k^{3}$, run the $(k+\mathrm{tw})^{\mathcal{O}(\mathrm{tw}+b)} \cdot n^{\mathcal{O}(1)}$ algorithm
■ If $b>3 k^{3}$, use DP on tree decomposition to find large enough H with the smallest deficiency d

■ If $b \geq\lceil d / 2\rceil$, we report YES by Lemma
■ Otherwise report NO since the smallest deficiency is too large

EDGE k-Core parameterized by vc

EDGE k-Core parameterized by vc

- Fix vertices and edges of C

EDGE k-Core parameterized by vc

- Fix vertices and edges of C
■ I is partitioned into classes by edges to C

$x_{3}=2$

EDGE \boldsymbol{k}-CORE parameterized by vc

- Fix vertices and edges of C
■ I is partitioned into classes by edges to C
- ILP, introduce variables $y_{d, d^{\prime}}$ for the number of vertices going from d
 to d^{\prime} after adding edges to C

■ Edges from I to C are fixed, additionally fix the bad edges
■ For each deficiency $d \in[k-|C|, k]$ we have a variable for the number of corresponding vertices
■ A modification of the Erdős-Gallai theorem verifies whether there exists a graph with these degrees

Theorem (Erdős and Gallai, 1960)

A sequence of non-negative integers
$d_{1} \geq d_{2} \geq \ldots \geq d_{n}$ is graphic if and only if $\sum_{i=1}^{n} d_{i}$ is even and for each $t \in[n]$ holds

$$
\sum_{i=1}^{t} d_{i} \leq t \cdot(t-1)+\sum_{j=t+1}^{n} \min \left\{d_{j}, t\right\}
$$

Open quiestions

- Could EDGE k-Core be solved efficiently on other graph classes?

Open quiestions

- Could EDGE k-Core be solved efficiently on other graph classes?
- Is there other meaningful ways to enforce a large k-core?

Open quiestions

- Could EDGE k-Core be solved efficiently on other graph classes?
- Is there other meaningful ways to enforce a large k-core?

Thanks for attention!

