# Computing Independent Transversals for *H*-free Graphs of Bounded Diameter

#### Siani Smith, Barnaby Martin and Daniël Paulusma

January 24, 2020

Siani Smith, Barnaby Martin and Daniël Paulusma

A graph G is 3-colourable if and only if there exists a map  $c: V(G) \rightarrow \{1, 2, 3\}$  such that for any two adjacent vertices, u and v,  $c(u) \neq c(v)$ .

#### Alternatively:

A graph G is 3-colourable if and only if there exists an independent set of vertices of G whose removal leaves the remaining graph bipartite.

A graph G has an independent odd cycle transversal of size at most k if and only if there exists an independent set of at most k vertices whose removal leaves the graph bipartite.

#### Alternatively:

A graph G has an independent odd cycle transversal of size at most k if and only if it has a 3-colouring such that some colour class has size at most k.

A graph G is near-bipartite if and only if it's vertex set can be partitioned into an independent set and a forest.

## Alternatively:

G is near-bipartite if and only if there exists a 3-colouring of G such that some pair of colour classes induces a forest.

G has an independent feedback vertex set of size at most k if and only if there exists an independent set of size at most k whose removal leaves a forest.

#### Alternatively:

G has an independent feedback vertex set of size at most k if and only if there exists a 3-colouring of G where one colour class has size at most k and the other two induce a forest.

- Each of these problems is NP-complete in general.
- We consider the effect of bounding the diameter of the input graph, as well as restricting to classes of *H*-free graphs.

## Theorem (Holyer, 1981)

3-Colouring is NP-complete for claw-free graphs.

Theorem (Emden-Weinert, Hougardy and Kreuter, 1998)

3-Colouring is NP-complete for graphs of girth at least g for any g.

Theorem (Bonomo, Chudnovsky, Maceli, Schaudt, Stein and Zhong, 2018)

3-Colouring is polynomial-time solvable for P7-free graphs.

#### Corollary

*IOCT is* NP-complete for H-free graphs where H contains a claw or a cycle by reduction from 3-Colouring for H-free graphs.

Theorem (Bonamy, Dabrowski, Feghali, Johnson and Paulusma, 2018)

Independent Odd Cycle Transversal is polynomial-time solvable for  $P_5$ -free graphs

Theorem (Bonamy, Dabrowski, Feghali, Johnson and Paulusma, 2018)

Near-Bipartiteness is NP-complete for claw-free graphs

Theorem (Bonamy, Dabrowski, Feghali, Johnson and Paulusma, 2018)

Near-Bipartiteness is NP-complete for graphs of girth at least g for any g.

Theorem (Bonamy, Dabrowski, Feghali, Johnson and Paulusma, 2018)

Near-Bipartiteness is polynomial-time solvable for P<sub>5</sub>-free graphs.

#### Corollary

*IFVS is* NP-complete for H-free graphs where H contains a claw or a cycle by reduction from near-bipartiteness for H-free graphs

Theorem (Bonamy, Dabrowski, Feghali, Johnson and Paulusma, 2018)

Independent Feedback Vertex Set is polynomial-time solvable for  $P_5$ -free graphs

The distance between two vertices u and v in a graph G is the length of a shortest path between them. The diameter of G is the maximum over all pairs u, v of the distance between u and v.

• What happens when we bound the diameter of G?

# Theorem (Bonamy, Dabrowski, Feghali, Johnson and Paulusma, 2018)

Independent Feedback Vertex set is polynomial-time solvable for graphs of diameter at most 2.

## **Open Problems**

Determine the complexity of 3-Colouring and Independent Odd Cycle Transversal for graphs of diameter 2

## Theorem (Mertzios and Spirakis, 2016)

3-Colouring is NP-complete for graphs of diameter at most 3.

# Theorem (Bonamy, Dabrowski, Feghali, Johnson and Paulusma, 2018)

*Near-Bipartiteness is* NP*-complete for graphs of diameter at most* 3.

• What if we both restrict the input to classes of *H*-free graphs and bound the diameter?

A polyad is a tree where exactly one vertex has degree greater than 2.  $K_{1,r}^{\ell}$  denotes the star with *r* leaves and one edge subdivided  $\ell$  times.



Figure: The claw  $K_{1,3}$  and the chair  $K_{1,3}^1$ 

## Theorem (Martin, Paulusma, S., 2019)

3-Colouring is constant-time solvable for  $K_{1,r}$ -free graphs of diameter at most d for any integers d and r.

- 3-colourable  $k_{1,r}$ -free graphs have maximum degree at most R(3, r).
- Combining this with bounded diameter gives a constant-sized bound on the number of vertices.
- Hence all four problems are polynomial-time solvable for  $k_{1,r}$ -free graphs of diameter at most d.

## Theorem (Martin, Paulusma, S., 2019)

3-Colouring is Polynomial time solvable for  $K_{1,3}^1$ -free graphs of Diameter at most d for any d.

#### Corollary

We can extend this result to near-bipartiteness, independent feedback vertex set and independent odd cycle transversal.

- Our aim is to show that each proper 3-colouring of some constant-sized set of vertices Γ leads to exactly one possible 3-colouring of G.
- It remains to check whether each of these colourings is proper, and if so whether it satisfies the conditions for Near-Bipartiteness, Independent Feedback Vertex Set or Independent Odd Cycle Transversal.

- We begin with the case where G contains an odd cycle C<sub>p</sub> with 5 ≤ p ≤ 2d + 1.
- Call the vertices of some such cycle, C<sub>p</sub>, N<sub>0</sub> and partition the remaining vertices into sets N<sub>i</sub> of those at minimum distance i from N<sub>0</sub>.



Figure: The case where G contains an odd cycle of length at least 5 and at most 2d + 1.

• To avoid the chair, each vertex of  $N_1$  must have some pair of adjacent parents in  $N_0$ . This leaves at most one available colour.



- If G is 3-colourable, any vertex v in  $N_1$  with an  $N_2$  child has exactly two adjacent parents
- If v has two non-adjacent parents then since G is chair-free v dominates N<sub>0</sub> and G is not 3-colourable



- Next we show that the number of N<sub>1</sub> vertices with exactly two N<sub>0</sub> parents is at most five.
- If two adjacent vertices share two independent children with no other  $N_0$  neighbours, we get an induced chair.
- Hence, if G is 3-colourable, each pair shares at most one such child.



- Now we show that the number of vertices in  $N_i$ , i > 1 is bounded.
- No vertex of  $N_1$  has two independent  $N_2$  children, hence there are at most ten vertices in  $N_2$ .



- Similarly no vertex in N<sub>i</sub> for i ≥ 2 has two independent children in N<sub>i+1</sub>.
- Hence there are at most  $5 \times 2^{i-1}$  vertices in  $N_i$  for  $i \ge 2$ .

- Let  $\Gamma$  be the set  $N_0 \cup \{N_i : i \geq 2\}$
- $\Gamma$  has size at most  $5+\sum_{i=2}^d 5\times 2^{i-1}$
- Any 3-colouring of Γ corresponds to at most one possible 3-colouring of G, we simply check whether any such colouring is proper.

- For Near-Bipartiteness we also check whether any two colour classes in some proper colouring form a forest.
- For IFVS we check for such a colouring where the third colour class has size at most *k*.
- For IOCT, we check whether any proper 3-colouring has a colour class of size at most *k*.

## Theorem (Mertzios and Spirakis, 2016)

3-Colouring is NP-complete for triangle-free graphs of diameter at most 3.

- The construction of Mertzios and Spirakis is 3-colourable if and only if it is near-bipartite.
- Hence all four problems are NP-complete for triangle-free graphs of diameter at most 3.

The girth of a graph G is the length of its shortest cycle. In other words G has girth g if and only if G is  $(C_3, C_4, ..., C_{g-1})$ -free.

Theorem (Damerell, 1973, Hoffman and Singleton, 1960, Singleton, 1968)

For every  $d \ge 1$ , every graph of diameter d and girth 2d + 1 is p-regular for some integer p. Moreover, if d = 2, then there are only four such graphs (with p = 2, 3, 7, 57, respectively) and if  $d \ge 3$ , then such graphs are cycles (of length 2d + 1).

#### Corollary

3-Colouring, IOCT, Near-Bipartiteness and IVFS are constant-time solvable for graphs of diameter d and girth 2d + 1 for any integers k and d.

# Diameter and Girth

## Theorem (Martin, Paulusma and S. 2019)

3-Colouring is NP-complete for graphs of diameter at most 4p and girth at least 4p + 2 for any integer p.



Figure: The reduction for p = 1

#### Corollary

This implies NP-completeness of IOCT and can be extended to Near-Bipartiteness and IFVS.

Siani Smith, Barnaby Martin and Daniël Paulusma

# Summary of Results for Diameter and Girth

| girth diameter | ≥ 3  | ≥ 4  | ≥ 5  | ≥ 6  | $\geq 7$ | ≥ 8 | ≥ 9 | $\geq$ 10 | $\geq 11$ |
|----------------|------|------|------|------|----------|-----|-----|-----------|-----------|
| $\leq 1$       | Р    | Р    | P    | Р    | Р        | Р   | Р   | Р         | Р         |
| ≤ 2            | ?    | ?    | Р    | Р    | Р        | Р   | Р   | Р         | Р         |
| <u>≤</u> 3     | NP-c | NP-c | ?    | ?    | Р        | Р   | Р   | Р         | Р         |
| $\leq 4$       | NP-c | NP-c | NP-c | NP-c | ?        | ?   | Р   | Р         | Р         |
| <u>≤</u> 5     | NP-c | NP-c | NP-c | NP-c | ?        | ?   | ?   | ?         | Р         |

Figure: The complexity of 3-COLOURING for graphs of diameter at most d and girth at least g.

- 3-Colouring / Independent Odd Cycle Transversal for (Triangle-free) graphs of diameter at most two.
- What are the complexities of all four problems for graphs of diameter d and girth g, g ≤ 2d.
- What are the complexities of Near-Bipartiteness, Independent Feedback Vertex Set and Independent Odd Cycle Transversal for *P*<sub>6</sub>-free graphs.
- What are the complexities of all four problems for K<sup>2</sup><sub>1,3</sub>-free graphs of diameter 3. or K<sup>1</sup><sub>1,4</sub>-free graphs of diameter 3.

# Thank you!

< D > < D

æ

⊀ ≣ ►

Siani Smith, Barnaby Martin and Daniël Paulusma