Preprocessing Vertex-Deletion Problems: Characterizing Graph Properties by Low-Rank Adjacencies

Jari J.H. de Kroon Bart M.P. Jansen

Eindhoven University of Technology

Workshop on Graph Modification, January 2020

II-FREE DELETION Input: A graph G and an integer k. Question: Does there exist a set $S \subseteq V(G)$ of size at most k such that G - S does not contain any graph from Π as induced subgraph?

```
II-FREE DELETION

Input: A graph G and an integer k.

Question: Does there exist a set S \subseteq V(G) of size at most k

such that G - S does not contain any graph from \Pi as induced

subgraph?
```

Often stated as \mathcal{F} -DELETION.

```
II-FREE DELETION

Input: A graph G and an integer k.

Question: Does there exist a set S \subseteq V(G) of size at most k

such that G - S does not contain any graph from \Pi as induced

subgraph?
```

Often stated as \mathcal{F} -DELETION.

```
Example
\{K_2\}-FREE DELETION \equiv VERTEX COVER \equiv {edgeless graphs}-DELETION
```

```
II-FREE DELETION

Input: A graph G and an integer k.

Question: Does there exist a set S \subseteq V(G) of size at most k

such that G - S does not contain any graph from \Pi as induced

subgraph?
```

Often stated as \mathcal{F} -DELETION.

Example

```
\{K_2\}-FREE DELETION \equiv VERTEX COVER \equiv {edgeless graphs}-DELETION
```

NP-hard - Lewis and Yannakakis [1980].

```
II-FREE DELETION

Input: A graph G and an integer k.

Question: Does there exist a set S \subseteq V(G) of size at most k

such that G - S does not contain any graph from \Pi as induced

subgraph?
```

Often stated as \mathcal{F} -DELETION.

Example

```
\{K_2\}-FREE DELETION \equiv VERTEX COVER \equiv {edgeless graphs}-DELETION
```

NP-hard - Lewis and Yannakakis [1980].

Question

Can we efficiently reduce the size of the input graph without changing the answer?

Parameterized complexity

Analyze problems in terms of input size *and* in terms of an additional parameter.

Parameterized complexity

Analyze problems in terms of input size *and* in terms of an additional parameter.

Kernelization

Efficiently reduce an instance (G, k) to an equivalent instance (G', k') of size bounded by some f(k).

Parameterized complexity

Analyze problems in terms of input size *and* in terms of an additional parameter.

Kernelization

Efficiently reduce an instance (G, k) to an equivalent instance (G', k') of size bounded by some f(k).

If f(k) is polynomial function, (G', k') is polynomial kernel.

Perfect graph

 Chromatic number of every induced subgraph equals its largest clique size.

Perfect graph

- Chromatic number of every induced subgraph equals its largest clique size.
- Equivalent to Berge graphs Chudnovsky et al. [2006].

Perfect graph

- Chromatic number of every induced subgraph equals its largest clique size.
- Equivalent to Berge graphs Chudnovsky et al. [2006].
- Graph without induced cycle (hole) of odd length at least 5 or its edge complement.

Perfect Deletion

▶ W[2]-hard by solution size - Heggernes et al. [2013].

Perfect Deletion

- ▶ W[2]-hard by solution size Heggernes et al. [2013].
- Try larger parameter, vertex cover size.

Perfect Deletion

- ▶ W[2]-hard by solution size Heggernes et al. [2013].
- ► Try larger parameter, vertex cover size.

Does **PERFECT DELETION** (VC) admit a polynomial kernel?

Perfect Deletion

- ▶ W[2]-hard by solution size Heggernes et al. [2013].
- Try larger parameter, vertex cover size.

Does **PERFECT DELETION** (VC) admit a polynomial kernel?

For which Π does $\Pi\mbox{-}\ensuremath{\mathrm{FREE}}$ Deletion~(vc) admit polynomial kernel?

Perfect Deletion

- ▶ W[2]-hard by solution size Heggernes et al. [2013].
- Try larger parameter, vertex cover size.

Does **PERFECT DELETION** (VC) admit a polynomial kernel?

For which Π does $\Pi\mbox{-}\ensuremath{\mathrm{FREE}}$ Deletion~(vc) admit polynomial kernel?

Sufficient condition by Fomin et al. [2014].

Perfect Deletion

- ▶ W[2]-hard by solution size Heggernes et al. [2013].
- > Try larger parameter, vertex cover size.

Does **PERFECT DELETION** (VC) admit a polynomial kernel?

For which Π does $\Pi\mbox{-}\ensuremath{\mathrm{FREE}}$ Deletion~(vc) admit polynomial kernel?

- Sufficient condition by Fomin et al. [2014].
- Not satisfied by:
 - ▶ Perfect Deletion (vc)
 - ► INTERVAL DELETION (VC)

Perfect Deletion

- ▶ W[2]-hard by solution size Heggernes et al. [2013].
- ► Try larger parameter, vertex cover size.

Does **PERFECT DELETION** (VC) admit a polynomial kernel?

For which Π does $\Pi\mbox{-}\ensuremath{\mathrm{FREE}}$ Deletion~(vc) admit polynomial kernel?

- Sufficient condition by Fomin et al. [2014].
- Not satisfied by:
 - ▶ Perfect Deletion (vc)
 - ► INTERVAL DELETION (VC)

 Polynomial kernel for INTERVAL DELETION (K) - Agrawal et al. [2019].

PERFECT DELETION (VC) Parameter: |X|Input: A graph G, a vertex cover X of G, and an integer k. Question: Does there exist a set $S \subseteq V(G)$ of size at most k such that G - S does not contain an odd (anti-)hole as induced subgraph?

PERFECT DELETION (VC) **Parameter:** |X| **Input:** A graph G, a vertex cover X of G, and an integer k. **Question:** Does there exist a set $S \subseteq V(G)$ of size at most ksuch that G - S does not contain an odd (anti-)hole as induced subgraph?

PERFECT DELETION (VC) **Parameter:** |X| **Input:** A graph G, a vertex cover X of G, and an integer k. **Question:** Does there exist a set $S \subseteq V(G)$ of size at most ksuch that G - S does not contain an odd (anti-)hole as induced subgraph?

Reduce instance (G, X, k) to equivalent instance $(G[X \cup A], X, k)$, s.t. $|A| \le p(|X|)$.

PERFECT DELETION (VC) **Parameter:** |X| **Input:** A graph G, a vertex cover X of G, and an integer k. **Question:** Does there exist a set $S \subseteq V(G)$ of size at most ksuch that G - S does not contain an odd (anti-)hole as induced subgraph?

Reduce instance (G,X,k) to equivalent instance $(G[X\cup A],X,k),$ s.t. $|A|\leq p(|X|).$

• G - S perfect $\Rightarrow G[X \cup A] - S$ perfect.

PERFECT DELETION (VC) **Parameter:** |X| **Input:** A graph G, a vertex cover X of G, and an integer k. **Question:** Does there exist a set $S \subseteq V(G)$ of size at most ksuch that G - S does not contain an odd (anti-)hole as induced subgraph?

Reduce instance (G,X,k) to equivalent instance $(G[X\cup A],X,k),$ s.t. $|A|\leq p(|X|).$

• G - S perfect $\Rightarrow G[X \cup A] - S$ perfect.

• Challenge: Pick A so that other direction holds.

Intuition: set A should represent independent set $V(G) \setminus X$.

Intuition: set A should represent independent set $V(G) \setminus X$.

Intuition: set A should represent independent set $V(G) \setminus X$.

Basic incidence vector For $x_i \in X$,

 $\operatorname{inc}_{(G,X)}(v)[x_i] = 1$ iff $x_i \in N(v)$.

Intuition: set A should represent independent set $V(G) \setminus X$.

Basic incidence vector For $x_i \in X$,

 $\operatorname{inc}_{(G,X)}(v)[x_i] = 1$ iff $x_i \in N(v)$.

More general (rank-c incidence vector)

For disjoint $P, Q \subseteq X$ s.t. $|P| + |Q| \le c$,

 $\operatorname{inc}_{(G,X)}^{c}(v)[(P,Q)] = 1 \text{ iff } P \subseteq N(v) \text{ and } Q \cap N(v) = \emptyset.$

For any induced cycle C in G with vertex cover X: $|C| \leq 2|X|$.

For any induced cycle C in G with vertex cover $X \colon |C| \leq 2|X|.$ Marking Scheme

• Compute multiset of vectors $\operatorname{inc}_{(G,X)}^4(u)$ for $u \in V(G) \setminus X$.

For any induced cycle C in G with vertex cover X: $|C| \leq 2|X|$.

- Compute multiset of vectors $\operatorname{inc}_{(G,X)}^4(u)$ for $u \in V(G) \setminus X$.
- Repeat k+2|X|+1 times:

For any induced cycle C in G with vertex cover X: $|C| \leq 2|X|$.

Marking Scheme

- Compute multiset of vectors $\operatorname{inc}_{(G,X)}^4(u)$ for $u \in V(G) \setminus X$.
- Repeat k + 2|X| + 1 times:

• Compute basis of multiset over \mathbb{F}_2 .

For any induced cycle C in G with vertex cover X: $|C| \leq 2|X|$.

- Compute multiset of vectors $\operatorname{inc}_{(G,X)}^4(u)$ for $u \in V(G) \setminus X$.
- Repeat k + 2|X| + 1 times:
 - Compute basis of multiset over \mathbb{F}_2 .
 - Mark a unique vertex corresponding to each vector in basis.

For any induced cycle C in G with vertex cover X: $|C| \leq 2|X|$.

- Compute multiset of vectors $\operatorname{inc}_{(G,X)}^4(u)$ for $u \in V(G) \setminus X$.
- Repeat k + 2|X| + 1 times:
 - Compute basis of multiset over \mathbb{F}_2 .
 - Mark a unique vertex corresponding to each vector in basis.
 - Remove basis from multiset (multiset subtraction).

For any induced cycle C in G with vertex cover X: $|C| \leq 2|X|$.

- Compute multiset of vectors $\operatorname{inc}_{(G,X)}^4(u)$ for $u \in V(G) \setminus X$.
- Repeat k + 2|X| + 1 times:
 - Compute basis of multiset over \mathbb{F}_2 .
 - Mark a unique vertex corresponding to each vector in basis.
 - Remove basis from multiset (multiset subtraction).
- Remove all unmarked vertices.

For any induced cycle C in G with vertex cover X: $|C| \leq 2|X|$.

Marking Scheme

- Compute multiset of vectors $\operatorname{inc}_{(G,X)}^4(u)$ for $u \in V(G) \setminus X$.
- Repeat k + 2|X| + 1 times:
 - ▶ Compute basis of multiset over \mathbb{F}_2 .
 - Mark a unique vertex corresponding to each vector in basis.
 - Remove basis from multiset (multiset subtraction).
- Remove all unmarked vertices.

Claim

Resulting graph has $\mathcal{O}(|X|+(k+2|X|+1)\cdot|X|^4)=\mathcal{O}(|X|^5)$ vertices.

Lemma

Let $P = \{v_1, ..., v_n\}$ be a path on n vertices where $n \ge 4$ is even, let y be a vertex not on P such that it is adjacent to both endpoints of P. If y and sees an even number of edges of P, then the graph contains an odd hole.

Lemma

Let $P = \{v_1, ..., v_n\}$ be a path on n vertices where $n \ge 4$ is even, let y be a vertex not on P such that it is adjacent to both endpoints of P. If y and sees an even number of edges of P, then the graph contains an odd hole.

Proof by induction on n: base case

▶ y sees no other vertex \rightarrow odd hole (C_5).

Lemma

Let $P = \{v_1, ..., v_n\}$ be a path on n vertices where $n \ge 4$ is even, let y be a vertex not on P such that it is adjacent to both endpoints of P. If y and sees an even number of edges of P, then the graph contains an odd hole.

Proof by induction on n: base case

- ▶ y sees no other vertex \rightarrow odd hole (C_5).
- ▶ $y \text{ sees } v_2 \text{ (and } v_3) \rightarrow 1 \text{ edge (3 edges) seen.}$

Lemma

Let $P = \{v_1, ..., v_n\}$ be a path on n vertices where $n \ge 4$ is even, let y be a vertex not on P such that it is adjacent to both endpoints of P. If y and sees an even number of edges of P, then the graph contains an odd hole.

Proof by induction on n: induction step

▶ y sees no other vertex \rightarrow odd hole (C_{n+1}) .

Lemma

Let $P = \{v_1, ..., v_n\}$ be a path on n vertices where $n \ge 4$ is even, let y be a vertex not on P such that it is adjacent to both endpoints of P. If y and sees an even number of edges of P, then the graph contains an odd hole.

Proof by induction on n: induction step

- ▶ y sees no other vertex \rightarrow odd hole (C_{n+1}) .
- ▶ y sees first and last edge \rightarrow IH on $P' = \{v_2, ..., v_{n-1}\}$.

Lemma

Let $P = \{v_1, ..., v_n\}$ be a path on n vertices where $n \ge 4$ is even, let y be a vertex not on P such that it is adjacent to both endpoints of P. If y and sees an even number of edges of P, then the graph contains an odd hole.

Proof by induction on n: induction step Otherwise, if y does not see last edge, let j < n - 1 be largest index s.t. y sees v_j .

Lemma

Let $P = \{v_1, ..., v_n\}$ be a path on n vertices where $n \ge 4$ is even, let y be a vertex not on P such that it is adjacent to both endpoints of P. If y and sees an even number of edges of P, then the graph contains an odd hole.

Proof by induction on n: induction step Otherwise, if y does not see last edge, let j < n - 1 be largest index s.t. y sees v_j .

• If
$$j$$
 odd, then $\{v_j, ..., v_n\} \cup \{y\}$ odd hole.

Lemma

Let $P = \{v_1, ..., v_n\}$ be a path on n vertices where $n \ge 4$ is even, let y be a vertex not on P such that it is adjacent to both endpoints of P. If y and sees an even number of edges of P, then the graph contains an odd hole.

Proof by induction on n: induction step Otherwise, if y does not see last edge, let j < n - 1 be largest index s.t. y sees v_j .

• If
$$j$$
 odd, then $\{v_j, ..., v_n\} \cup \{y\}$ odd hole.

• If j even, then $j \neq 2 \rightarrow$ IH on $P' = \{v_1, ..., v_j\}$.

• Compute disjoint bases A_i for $i \in [k+2|X|+1]$, $A = \bigcup_i A_i$.

Compute disjoint bases A_i for i ∈ [k + 2|X| + 1], A = ∪_i A_i.
Consider kernel graph G[X ∪ A].

- Compute disjoint bases A_i for $i \in [k+2|X|+1]$, $A = \bigcup_i A_i$.
- Consider kernel graph $G[X \cup A]$.
- ▶ Consider solution S (red) s.t. $G[X \cup A] S$ perfect.

For contradiction, suppose G - S contains odd hole.

For contradiction, suppose G − S contains odd hole.
Let C be an odd hole s.t. |V(C) \ (X ∪ A)| minimum.

- For contradiction, suppose G S contains odd hole.
- Let C be an odd hole s.t. $|V(C) \setminus (X \cup A)|$ minimum.
- ▶ $|C| + |S| \le 2|X| + k$, there exists A_i outside $S \cup C$ (e.g. A_2).

• As v not marked, $\operatorname{inc}_{(G,X)}^4(v) = \sum_{y \in A_i} \operatorname{inc}_{(G,X)}^4(y)$ over \mathbb{F}_2 .

As v not marked, inc⁴_(G,X)(v) = ∑_{y∈A_i} inc⁴_(G,X)(y) over F₂.
 Claim: some u ∈ A_i sees even number of edges of P = C − v.

• As v not marked, $\operatorname{inc}_{(G,X)}^4(v) = \sum_{y \in A_i} \operatorname{inc}_{(G,X)}^4(y)$ over \mathbb{F}_2 .

• Claim: some $u \in A_i$ sees even number of edges of P = C - v.

By lemma, there exists odd hole C' that contradicts minimality of C.

• As v not marked, $\operatorname{inc}_{(G,X)}^4(v) = \sum_{y \in A_i} \operatorname{inc}_{(G,X)}^4(y)$ over \mathbb{F}_2 .

• Claim: some $u \in A_i$ sees even number of edges of P = C - v.

- By lemma, there exists odd hole C' that contradicts minimality of C.
- ► Hence G S does not contain odd hole.

▶
$$X = \{x_1, ..., x_6\}$$
 and v .

•
$$X = \{x_1, ..., x_6\}$$
 and v .
• $Y = \{y_1, ..., y_7\}.$

y_1	y_2	y_3	y_4	y_5	y_6	y_7	v
1	1	1	0	1	0	0	0
1	1	0	1	0	0	1	0
1	0	0	0	0	0	1	0
1	0	0	0	0	1	0	0
0	1	0	0	0	0	0	1
			÷				:
	1 1 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

▶
$$X = \{x_1, ..., x_6\}$$
 and v .
▶ $Y = \{y_1, ..., y_7\}$.
▶ $inc^4_{(G,X)}(v) = \sum_{y \in Y} inc^4_{(G,X)}(y)$ over \mathbb{F}_2 .

Running Example: PERFECT DELETION (VC) Concrete example

Vertex	$\{p, v_1\}$	$\{v_1, v_2\}$	$\{v_2,v_3\}$	$\{v_3,v_4\}$	$\{v_4,q\}$	
y_1	1	1	1	1	1	
y_2	1	0	0	0	1	
y_3	0	0	0	0	1	
y_4	1	0	0	0	0	
y_5	0	0	0	1	1	
y_6	0	0	1	0	0	
y_7	1	1	0	0	0	
v	0	0	0	0	0	

v	y_7	y_6	y_5	y_4	y_3	y_2	y_1	
0	0	0	1	0	1	1	1	$(\{x_5\}, \emptyset)$
0	1	0	0	1	0	1	1	$(\{x_1, x_2\}, \emptyset)$
0	1	0	0	0	0	0	1	$(\{x_2, x_3\}, \emptyset)$
0	0	1	0	0	0	0	1	$(\{x_3, x_4\}, \emptyset)$
1	0	0	0	0	0	1	0	$(\{x_1, x_6\}, \{x_3, x_4\})$
÷				÷				
		0		0		1	0	$(\{x_1, x_6\}, \{x_3, x_4\})$:

•
$$X = \{x_1, ..., x_6\}$$
 and v .

►
$$Y = \{y_1, ..., y_7\}.$$

- $\operatorname{inc}_{(G,X)}^4(v) = \sum_{y \in Y} \operatorname{inc}_{(G,X)}^4(y)$ over \mathbb{F}_2 .
- ▶ y₂ sees 2 edges of X.

•
$$G[\{x_2, x_3, x_4, x_5, y_2\}]$$
 induces odd hole.

Odd anti-holes can be dealt with in a similar fashion.

Odd anti-holes can be dealt with in a similar fashion.

Theorem

 $\operatorname{PERFECT}$ $\operatorname{DELETION}$ (VC) admits a kernel with $\mathcal{O}(|X|^5)$ vertices.

Odd anti-holes can be dealt with in a similar fashion.

Theorem

 $\operatorname{Perfect}$ $\operatorname{Deletion}$ (vc) admits a kernel with $\mathcal{O}(|X|^5)$ vertices.

For which Π does $\Pi\mbox{-}\ensuremath{\mathrm{FREE}}$ Deletion~(vc) admit polynomial kernel?

Odd anti-holes can be dealt with in a similar fashion.

Theorem PERFECT DELETION (VC) admits a kernel with $\mathcal{O}(|X|^5)$ vertices.

For which Π does $\Pi\mbox{-}\ensuremath{\mathrm{FREE}}$ Deletion~(vc) admit polynomial kernel?

We can generalize this incidence vector approach.

Definition (rank-c adjacencies)

Let $c \in \mathbb{N}$. Graph property Π is characterized by rank-c adjacencies if the following holds:

For each graph H, for each vertex cover X of H, for each set $D\subseteq V(H)\setminus X,$ for each $v\in V(H)\setminus (D\cup X),$ if

• $H - D \in \Pi$, and

• $\operatorname{inc}_{(H,X)}^{c}(v) = \sum_{u \in D} \operatorname{inc}_{(H,X)}^{c}(u)$ when evaluated over \mathbb{F}_{2} , then there exists $D' \subseteq D$ such that $H - v - (D \setminus D') \in \Pi$.

Theorem [Fomin et al. 2014]

If Π is a graph property such that:

- (i) Π is characterized by c adjacencies,
- (ii) every graph in Π contains at least one edge, and
- (iii) there is a polynomial $p: \mathbb{N} \to \mathbb{N}$ such that all graphs G that are vertex-minimal with respect to Π satisfy $|V(G)| \leq p(\operatorname{VC}(G)),$

then Π -FREE DELETION parameterized by the vertex cover size x admits a polynomial kernel with $\mathcal{O}((x + p(x))x^c)$ vertices.

Theorem [Jansen & de Kroon]

If Π is a graph property such that:

- (i) Π is characterized by rank-c adjacencies,
- (ii) every graph in Π contains at least one edge, and
- (iii) there is a polynomial $p: \mathbb{N} \to \mathbb{N}$ such that all graphs G that are vertex-minimal with respect to Π satisfy $|V(G)| \leq p(\operatorname{VC}(G)),$

then $\Pi\text{-}\mathsf{FREE}$ DELETION parameterized by the vertex cover size x admits a polynomial kernel with $\mathcal{O}((x+p(x))x^c)$ vertices.

Fomin et al. [2014]

$\Pi:=all\ graphs\ that$	<i>c</i> ?	Π -free deletion kernel
contain C_n for some $n \ge \ell$	$\ell - 1$	$\mathcal{O}(X ^\ell)$ vrtcs
contain an odd cycle	2	$\mathcal{O}(X ^3)$ vrtcs

Fomin et al. [2014]

$\Pi:=all\ graphs\ that$	c?	Π -free deletion kernel
contain C_n for some $n \ge \ell$	$\ell - 1$	$\mathcal{O}(X ^\ell)$ vrtcs
contain an odd cycle	2	$\mathcal{O}(X ^3)$ vrtcs

Our results

$\Pi:=all \text{ graphs that}$	rank- c ?	Π -free deletion kernel
are not perfect	4	$\mathcal{O}(X ^5)$ vrtcs
contain even holes	3	$\mathcal{O}(X ^4)$ vrtcs
contain asteroidal triples	8	$\mathcal{O}(X ^9)$ vrtcs
are not interval	8	$\mathcal{O}(X ^9)$ vrtcs
contain a wheel	4	$\mathcal{O}(X ^5)$ vrtcs

We gave a weaker sufficient condition for polynomial kernelization of $\Pi\text{-}\mathrm{FREE}$ Deletion (vc).

We gave a weaker sufficient condition for polynomial kernelization of $\Pi\text{-}\mathrm{FREE}$ Deletion (vc). Is it tight?

We gave a weaker sufficient condition for polynomial kernelization of $\Pi\text{-}\mathrm{FREE}$ Deletion (vc). Is it tight?

Wheel

A wheel W_n for some $n \ge 3$ consists of an induced cycle C_n with an apex vertex.

We gave a weaker sufficient condition for polynomial kernelization of $\Pi\text{-}\mathrm{FREE}$ Deletion (vc). Is it tight?

Wheel

A wheel W_n for some $n \ge 3$ consists of an induced cycle C_n with an apex vertex.

$\Pi:=$ all graphs that	rank- c ?	Π -free deletion kernel
contain a wheel	4	$\mathcal{O}(X ^5)$ vrtcs

We gave a weaker sufficient condition for polynomial kernelization of $\Pi\text{-}\mathrm{FREE}$ Deletion (vc). Is it tight?

Wheel

A wheel W_n for some $n \ge 3$ consists of an induced cycle C_n with an apex vertex.

$\Pi := $ all graphs that	rank- c ?	Π -free deletion kernel
contain a wheel	4	$\mathcal{O}(X ^5)$ vrtcs
contain a wheel besides W_4	no $c \in \mathbb{N}$	no poly (NP $\not\subseteq$ coNP/poly)

$\Pi:=$ all graphs that	rank- c ?	Π -free deletion kernel
are not perfect	4	$\mathcal{O}(X ^5)$ vrtcs
contain even holes	3	$\mathcal{O}(X ^4)$ vrtcs
contain asteroidal triples	8	$\mathcal{O}(X ^9)$ vrtcs
are not interval	8	$\mathcal{O}(X ^9)$ vrtcs
contain a wheel	4	$\mathcal{O}(X ^5)$ vrtcs
contain a wheel besides W_4	no $c \in \mathbb{N}$	no poly (NP $\not\subseteq$ coNP/poly)

$\Pi:=all\ graphs\ that$	rank- c ?	Π -free deletion kernel
are not perfect	4	$\mathcal{O}(X ^5)$ vrtcs
contain even holes	3	$\mathcal{O}(X ^4)$ vrtcs
contain asteroidal triples	8	$\mathcal{O}(X ^9)$ vrtcs
are not interval	8	$\mathcal{O}(X ^9)$ vrtcs
contain a wheel	4	$\mathcal{O}(X ^5)$ vrtcs
contain a wheel besides W_4	no $c \in \mathbb{N}$	no poly (NP $\not\subseteq$ coNP/poly)

Open problems:

	ls the	meta-theorem	tight	now?
--	--------	--------------	-------	------

$\Pi:=all\ graphs\ that$	rank- c ?	Π -free deletion kernel
are not perfect	4	$\mathcal{O}(X ^5)$ vrtcs
contain even holes	3	$\mathcal{O}(X ^4)$ vrtcs
contain asteroidal triples	8	$\mathcal{O}(X ^9)$ vrtcs
are not interval	8	$\mathcal{O}(X ^9)$ vrtcs
contain a wheel	4	$\mathcal{O}(X ^5)$ vrtcs
contain a wheel besides W_4	no $c \in \mathbb{N}$	no poly (NP $\not\subseteq$ coNP/poly)

Open problems:

- Is the meta-theorem tight now?
- Can the meta-theorem be used for PERMUTATION DELETION or COMPARABILITY DELETION?