Preprocessing Vertex-Deletion Problems:
 Characterizing Graph Properties by Low-Rank Adjacencies

Jari J.H. de Kroon Bart M.P. Jansen

Eindhoven University of Technology
Workshop on Graph Modification, January 2020

Vertex-Deletion Problem

П-free Deletion
Input: A graph G and an integer k.
Question: Does there exist a set $S \subseteq V(G)$ of size at most k such that $G-S$ does not contain any graph from Π as induced subgraph?

Vertex-Deletion Problem

M-free Deletion
Input: A graph G and an integer k.
Question: Does there exist a set $S \subseteq V(G)$ of size at most k such that $G-S$ does not contain any graph from Π as induced subgraph?

Often stated as \mathcal{F}-Deletion.

Vertex-Deletion Problem

П-free Deletion
Input: A graph G and an integer k.
Question: Does there exist a set $S \subseteq V(G)$ of size at most k such that $G-S$ does not contain any graph from Π as induced subgraph?

Often stated as \mathcal{F}-Deletion.

Example

$\left\{K_{2}\right\}$-Free Deletion \equiv Vertex Cover \equiv \{edgeless graphs\}-DELETION

Vertex-Deletion Problem

П-free Deletion
Input: A graph G and an integer k.
Question: Does there exist a set $S \subseteq V(G)$ of size at most k such that $G-S$ does not contain any graph from Π as induced subgraph?

Often stated as \mathcal{F}-Deletion.

Example

$\left\{K_{2}\right\}$-Free Deletion \equiv Vertex Cover \equiv \{edgeless graphs\}-DElETion

NP-hard - Lewis and Yannakakis [1980].

Vertex-Deletion Problem

M-free Deletion
Input: A graph G and an integer k.
Question: Does there exist a set $S \subseteq V(G)$ of size at most k such that $G-S$ does not contain any graph from Π as induced subgraph?

Often stated as \mathcal{F}-Deletion.

Example

$\left\{K_{2}\right\}$-Free Deletion \equiv Vertex Cover \equiv \{edgeless graphs\}-DELETION

NP-hard - Lewis and Yannakakis [1980].
Question
Can we efficiently reduce the size of the input graph without changing the answer?

Parameterized complexity

Analyze problems in terms of input size and in terms of an additional parameter.

Parameterized complexity

Analyze problems in terms of input size and in terms of an additional parameter.

Kernelization
Efficiently reduce an instance (G, k) to an equivalent instance (G^{\prime}, k^{\prime}) of size bounded by some $f(k)$.

Parameterized complexity

Analyze problems in terms of input size and in terms of an additional parameter.

Kernelization
Efficiently reduce an instance (G, k) to an equivalent instance (G^{\prime}, k^{\prime}) of size bounded by some $f(k)$.

If $f(k)$ is polynomial function, $\left(G^{\prime}, k^{\prime}\right)$ is polynomial kernel.

Running Example: Perfect Deletion

Perfect graph

- Chromatic number of every induced subgraph equals its largest clique size.

Running Example: Perfect Deletion

Perfect graph

- Chromatic number of every induced subgraph equals its largest clique size.
- Equivalent to Berge graphs - Chudnovsky et al. [2006].

Running Example: Perfect Deletion

Perfect graph

- Chromatic number of every induced subgraph equals its largest clique size.
- Equivalent to Berge graphs - Chudnovsky et al. [2006].
- Graph without induced cycle (hole) of odd length at least 5 or its edge complement.

Running Example: Perfect Deletion

Perfect Deletion

- W[2]-hard by solution size - Heggernes et al. [2013].

Running Example: Perfect Deletion

Perfect Deletion

- W[2]-hard by solution size - Heggernes et al. [2013].
- Try larger parameter, vertex cover size.

Running Example: Perfect Deletion

Perfect Deletion

- W[2]-hard by solution size - Heggernes et al. [2013].
- Try larger parameter, vertex cover size.

Does Perfect Deletion (vc) admit a polynomial kernel?

Running Example: Perfect Deletion

Perfect Deletion

- W[2]-hard by solution size - Heggernes et al. [2013].
- Try larger parameter, vertex cover size.

Does Perfect Deletion (vc) admit a polynomial kernel?

For which Π does Π-free Deletion (vc) admit polynomial kernel?

Running Example: Perfect Deletion

Perfect Deletion

- W[2]-hard by solution size - Heggernes et al. [2013].
- Try larger parameter, vertex cover size.

Does Perfect Deletion (vc) admit a polynomial kernel?

For which Π does Π-free Deletion (vc) admit polynomial kernel?

- Sufficient condition by Fomin et al. [2014].

Running Example: Perfect Deletion

Perfect Deletion

- W[2]-hard by solution size - Heggernes et al. [2013].
- Try larger parameter, vertex cover size.

Does Perfect Deletion (vc) admit a polynomial kernel?

For which Π does Π-free Deletion (vc) admit polynomial kernel?

- Sufficient condition by Fomin et al. [2014].
- Not satisfied by:
- Perfect Deletion (Vc)
- Interval Deletion (vc)

Running Example: Perfect Deletion

Perfect Deletion

- W[2]-hard by solution size - Heggernes et al. [2013].
- Try larger parameter, vertex cover size.

Does Perfect Deletion (vc) admit a polynomial kernel?

For which Π does Π-free Deletion (vc) admit polynomial kernel?

- Sufficient condition by Fomin et al. [2014].
- Not satisfied by:
- Perfect Deletion (vc)
- Interval Deletion (vc)
- Polynomial kernel for Interval Deletion (k) - Agrawal et al. [2019].

Running Example: Perfect Deletion (vc)

Perfect Deletion (vc) Parameter: $|X|$
Input: A graph G, a vertex cover X of G, and an integer k.
Question: Does there exist a set $S \subseteq V(G)$ of size at most k such that $G-S$ does not contain an odd (anti-)hole as induced subgraph?

Running Example: Perfect Deletion (vc)

Perfect Deletion (vc) Parameter: $|X|$ Input: A graph G, a vertex cover X of G, and an integer k. Question: Does there exist a set $S \subseteq V(G)$ of size at most k such that $G-S$ does not contain an odd (anti-)hole as induced subgraph?

Running Example: Perfect Deletion (vc)

Perfect Deletion (vc) Parameter: $|X|$ Input: A graph G, a vertex cover X of G, and an integer k.
Question: Does there exist a set $S \subseteq V(G)$ of size at most k such that $G-S$ does not contain an odd (anti-)hole as induced subgraph?

Reduce instance (G, X, k) to equivalent instance ($G[X \cup A], X, k$), s.t. $|A| \leq p(|X|)$.

Running Example: Perfect Deletion (vc)

Perfect Deletion (vc) Parameter: $|X|$ Input: A graph G, a vertex cover X of G, and an integer k.
Question: Does there exist a set $S \subseteq V(G)$ of size at most k such that $G-S$ does not contain an odd (anti-)hole as induced subgraph?

Reduce instance (G, X, k) to equivalent instance ($G[X \cup A], X, k$), s.t. $|A| \leq p(|X|)$.

- $G-S$ perfect $\Rightarrow G[X \cup A]-S$ perfect.

Running Example: Perfect Deletion (vc)

Perfect Deletion (vc) Parameter: $|X|$ Input: A graph G, a vertex cover X of G, and an integer k.
Question: Does there exist a set $S \subseteq V(G)$ of size at most k such that $G-S$ does not contain an odd (anti-)hole as induced subgraph?

Reduce instance (G, X, k) to equivalent instance ($G[X \cup A], X, k$), s.t. $|A| \leq p(|X|)$.

- $G-S$ perfect $\Rightarrow G[X \cup A]-S$ perfect.
- Challenge: Pick A so that other direction holds.

Incidence vectors

Intuition: set A should represent independent set $V(G) \backslash X$.

Incidence vectors

Intuition: set A should represent independent set $V(G) \backslash X$.

Incidence vectors

Intuition: set A should represent independent set $V(G) \backslash X$.

$$
\operatorname{inc}_{(G, X)}(v)=\left(\begin{array}{cc}
x_{1}: & 1 \\
x_{2}: & 0 \\
x_{3}: & 0 \\
x_{4}: & 0
\end{array}\right)
$$

Basic incidence vector
For $x_{i} \in X$, $\operatorname{inc}_{(G, X)}(v)\left[x_{i}\right]=1$ iff $x_{i} \in N(v)$.

Incidence vectors

Intuition: set A should represent independent set $V(G) \backslash X$.

$$
\operatorname{inc}_{(G, X)}^{2}(v)=\left(\begin{array}{ccc}
\left(\left\{x_{1}\right\}, \emptyset\right) & \vdots & 1 \\
\left(\left\{x_{1}, x_{2}\right\}, \emptyset\right) & \vdots & 0 \\
\left(\left\{x_{1}\right\},\left\{x_{2}\right\}\right) & \vdots & 1 \\
\vdots & & \vdots
\end{array}\right)
$$

Basic incidence vector
For $x_{i} \in X$, $\operatorname{inc}_{(G, X)}(v)\left[x_{i}\right]=1$ iff $x_{i} \in N(v)$.

More general (rank-c incidence vector)
For disjoint $P, Q \subseteq X$ s.t. $|P|+|Q| \leq c$, $\operatorname{inc}_{(G, X)}^{c}(v)[(P, Q)]=1$ iff $P \subseteq N(v)$ and $Q \cap N(v)=\emptyset$.

Running example: Perfect Deletion (vc)

Marking set A.
For any induced cycle C in G with vertex cover $X:|C| \leq 2|X|$.

Running example: Perfect Deletion (vc)

Marking set A.
For any induced cycle C in G with vertex cover $X:|C| \leq 2|X|$. Marking Scheme

- Compute multiset of vectors $\operatorname{inc}_{(G, X)}^{4}(u)$ for $u \in V(G) \backslash X$.

Running example: Perfect Deletion (vc)

Marking set A.
For any induced cycle C in G with vertex cover $X:|C| \leq 2|X|$. Marking Scheme

- Compute multiset of vectors $\operatorname{inc}_{(G, X)}^{4}(u)$ for $u \in V(G) \backslash X$.
- Repeat $k+2|X|+1$ times:

Running example: Perfect Deletion (vc)

Marking set A.
For any induced cycle C in G with vertex cover $X:|C| \leq 2|X|$. Marking Scheme

- Compute multiset of vectors $\operatorname{inc}_{(G, X)}^{4}(u)$ for $u \in V(G) \backslash X$.
- Repeat $k+2|X|+1$ times:
- Compute basis of multiset over \mathbb{F}_{2}.

Running example: Perfect Deletion (vc)

Marking set A.
For any induced cycle C in G with vertex cover $X:|C| \leq 2|X|$. Marking Scheme

- Compute multiset of vectors $\operatorname{inc}_{(G, X)}^{4}(u)$ for $u \in V(G) \backslash X$.
- Repeat $k+2|X|+1$ times:
- Compute basis of multiset over \mathbb{F}_{2}.
- Mark a unique vertex corresponding to each vector in basis.

Running example: Perfect Deletion (vc)

Marking set A.

For any induced cycle C in G with vertex cover $X:|C| \leq 2|X|$. Marking Scheme

- Compute multiset of vectors $\operatorname{inc}_{(G, X)}^{4}(u)$ for $u \in V(G) \backslash X$.
- Repeat $k+2|X|+1$ times:
- Compute basis of multiset over \mathbb{F}_{2}.
- Mark a unique vertex corresponding to each vector in basis.
- Remove basis from multiset (multiset subtraction).

Running example: Perfect Deletion (vc)

Marking set A.

For any induced cycle C in G with vertex cover $X:|C| \leq 2|X|$. Marking Scheme

- Compute multiset of vectors $\operatorname{inc}_{(G, X)}^{4}(u)$ for $u \in V(G) \backslash X$.
- Repeat $k+2|X|+1$ times:
- Compute basis of multiset over \mathbb{F}_{2}.
- Mark a unique vertex corresponding to each vector in basis.
- Remove basis from multiset (multiset subtraction).
- Remove all unmarked vertices.

Running example: Perfect Deletion (vc)

Marking set A.

For any induced cycle C in G with vertex cover $X:|C| \leq 2|X|$. Marking Scheme

- Compute multiset of vectors $\operatorname{inc}_{(G, X)}^{4}(u)$ for $u \in V(G) \backslash X$.
- Repeat $k+2|X|+1$ times:
- Compute basis of multiset over \mathbb{F}_{2}.
- Mark a unique vertex corresponding to each vector in basis.
- Remove basis from multiset (multiset subtraction).
- Remove all unmarked vertices.

Claim
Resulting graph has $\mathcal{O}\left(|X|+(k+2|X|+1) \cdot|X|^{4}\right)=\mathcal{O}\left(|X|^{5}\right)$ vertices.

Running Example: Perfect Deletion (vc)

Lemma
Let $P=\left\{v_{1}, \ldots, v_{n}\right\}$ be a path on n vertices where $n \geq 4$ is even, let y be a vertex not on P such that it is adjacent to both endpoints of P. If y and sees an even number of edges of P, then the graph contains an odd hole.

Running Example: Perfect Deletion (vc)

Lemma

Let $P=\left\{v_{1}, \ldots, v_{n}\right\}$ be a path on n vertices where $n \geq 4$ is even, let y be a vertex not on P such that it is adjacent to both endpoints of P. If y and sees an even number of edges of P, then the graph contains an odd hole.

Proof by induction on n : base case

- y sees no other vertex \rightarrow odd hole $\left(C_{5}\right)$.

Running Example: Perfect Deletion (vc)

Lemma

Let $P=\left\{v_{1}, \ldots, v_{n}\right\}$ be a path on n vertices where $n \geq 4$ is even, let y be a vertex not on P such that it is adjacent to both endpoints of P. If y and sees an even number of edges of P, then the graph contains an odd hole.

Proof by induction on n : base case

- y sees no other vertex \rightarrow odd hole $\left(C_{5}\right)$.
- y sees v_{2} (and $\left.v_{3}\right) \rightarrow 1$ edge (3 edges) seen.

Running Example: Perfect Deletion (vc)

Lemma

Let $P=\left\{v_{1}, \ldots, v_{n}\right\}$ be a path on n vertices where $n \geq 4$ is even, let y be a vertex not on P such that it is adjacent to both endpoints of P. If y and sees an even number of edges of P, then the graph contains an odd hole.

Proof by induction on n : induction step

- y sees no other vertex \rightarrow odd hole $\left(C_{n+1}\right)$.

Running Example: Perfect Deletion (vc)

Lemma

Let $P=\left\{v_{1}, \ldots, v_{n}\right\}$ be a path on n vertices where $n \geq 4$ is even, let y be a vertex not on P such that it is adjacent to both endpoints of P. If y and sees an even number of edges of P, then the graph contains an odd hole.

Proof by induction on n : induction step

- y sees no other vertex \rightarrow odd hole $\left(C_{n+1}\right)$.
- y sees first and last edge $\rightarrow \mathrm{IH}$ on $P^{\prime}=\left\{v_{2}, \ldots, v_{n-1}\right\}$.

Running Example: Perfect Deletion (vc)

Lemma

Let $P=\left\{v_{1}, \ldots, v_{n}\right\}$ be a path on n vertices where $n \geq 4$ is even, let y be a vertex not on P such that it is adjacent to both endpoints of P. If y and sees an even number of edges of P, then the graph contains an odd hole.

Proof by induction on n : induction step
Otherwise, if y does not see last edge, let $j<n-1$ be largest index s.t. y sees v_{j}.

Running Example: Perfect Deletion (vc)

Lemma

Let $P=\left\{v_{1}, \ldots, v_{n}\right\}$ be a path on n vertices where $n \geq 4$ is even, let y be a vertex not on P such that it is adjacent to both endpoints of P. If y and sees an even number of edges of P, then the graph contains an odd hole.

Proof by induction on n : induction step
Otherwise, if y does not see last edge, let $j<n-1$ be largest index s.t. y sees v_{j}.

- If j odd, then $\left\{v_{j}, \ldots, v_{n}\right\} \cup\{y\}$ odd hole.

Running Example: Perfect Deletion (vc)

Lemma

Let $P=\left\{v_{1}, \ldots, v_{n}\right\}$ be a path on n vertices where $n \geq 4$ is even, let y be a vertex not on P such that it is adjacent to both endpoints of P. If y and sees an even number of edges of P, then the graph contains an odd hole.

Proof by induction on n : induction step
Otherwise, if y does not see last edge, let $j<n-1$ be largest index s.t. y sees v_{j}.

- If j odd, then $\left\{v_{j}, \ldots, v_{n}\right\} \cup\{y\}$ odd hole.
- If j even, then $j \neq 2 \rightarrow \mathrm{IH}$ on $P^{\prime}=\left\{v_{1}, \ldots, v_{j}\right\}$.

Running Example: Perfect Deletion (vc)

$G[X \cup A]-S$ perfect $\Rightarrow G-S$ perfect

Running Example: Perfect Deletion (vc)

$G[X \cup A]-S$ perfect $\Rightarrow G-S$ perfect

- Compute disjoint bases A_{i} for $i \in[k+2|X|+1], A=\bigcup_{i} A_{i}$.

Running Example: Perfect Deletion (vc)

$G[X \cup A]-S$ perfect $\Rightarrow G-S$ perfect

- Compute disjoint bases A_{i} for $i \in[k+2|X|+1], A=\bigcup_{i} A_{i}$.
- Consider kernel graph $G[X \cup A]$.

Running Example: Perfect Deletion (vc)

$G[X \cup A]-S$ perfect $\Rightarrow G-S$ perfect

- Compute disjoint bases A_{i} for $i \in[k+2|X|+1], A=\bigcup_{i} A_{i}$.
- Consider kernel graph $G[X \cup A]$.
- Consider solution S (red) s.t. $G[X \cup A]-S$ perfect.

Running Example: Perfect Deletion (vc)

$G[X \cup A]-S$ perfect $\Rightarrow G-S$ perfect

- For contradiction, suppose $G-S$ contains odd hole.

Running Example: Perfect Deletion (vc)

$G[X \cup A]-S$ perfect $\Rightarrow G-S$ perfect

- For contradiction, suppose $G-S$ contains odd hole.
- Let C be an odd hole s.t. $|V(C) \backslash(X \cup A)|$ minimum.

Running Example: Perfect Deletion (vc)

$G[X \cup A]-S$ perfect $\Rightarrow G-S$ perfect

- For contradiction, suppose $G-S$ contains odd hole.
- Let C be an odd hole s.t. $|V(C) \backslash(X \cup A)|$ minimum.
- $|C|+|S| \leq 2|X|+k$, there exists A_{i} outside $S \cup C$ (e.g. A_{2}).

Running Example: Perfect Deletion (vc)

$G[X \cup A]-S$ perfect $\Rightarrow G-S$ perfect

- As v not marked, $\operatorname{inc}_{(G, X)}^{4}(v)=\sum_{y \in A_{i}} \operatorname{inc}_{(G, X)}^{4}(y)$ over \mathbb{F}_{2}.

Running Example: Perfect Deletion (vc)

$G[X \cup A]-S$ perfect $\Rightarrow G-S$ perfect

- As v not marked, $\operatorname{inc}_{(G, X)}^{4}(v)=\sum_{y \in A_{i}} \operatorname{inc}_{(G, X)}^{4}(y)$ over \mathbb{F}_{2}.
- Claim: some $u \in A_{i}$ sees even number of edges of $P=C-v$.

Running Example: Perfect Deletion (vc)

$G[X \cup A]-S$ perfect $\Rightarrow G-S$ perfect

- As v not marked, $\operatorname{inc}_{(G, X)}^{4}(v)=\sum_{y \in A_{i}} \operatorname{inc}_{(G, X)}^{4}(y)$ over \mathbb{F}_{2}.
- Claim: some $u \in A_{i}$ sees even number of edges of $P=C-v$.
- By lemma, there exists odd hole C^{\prime} that contradicts minimality of C.

Running Example: Perfect Deletion (vc)

$G[X \cup A]-S$ perfect $\Rightarrow G-S$ perfect

- As v not marked, $\operatorname{inc}_{(G, X)}^{4}(v)=\sum_{y \in A_{i}} \operatorname{inc}_{(G, X)}^{4}(y)$ over \mathbb{F}_{2}.
- Claim: some $u \in A_{i}$ sees even number of edges of $P=C-v$.
- By lemma, there exists odd hole C^{\prime} that contradicts minimality of C.
- Hence $G-S$ does not contain odd hole.

Running Example: Perfect Deletion (vc)

Concrete example

- $X=\left\{x_{1}, \ldots, x_{6}\right\}$ and v.

Running Example: Perfect Deletion (vc)

Concrete example

- $X=\left\{x_{1}, \ldots, x_{6}\right\}$ and v.
- $Y=\left\{y_{1}, \ldots, y_{7}\right\}$.

Running Example: Perfect Deletion (vc)

Concrete example

	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}	y_{7}	v
$\left(\left\{x_{5}\right\}, \emptyset\right)$	1	1	1	0	1	0	0	0
$\left(\left\{x_{1}, x_{2}\right\}, \emptyset\right)$	1	1	0	1	0	0	1	0
$\left(\left\{x_{2}, x_{3}\right\}, \emptyset\right)$	1	0	0	0	0	0	1	0
$\left(\left\{x_{3}, x_{4}\right\}, \emptyset\right)$	1	0	0	0	0	1	0	0
$\left(\left\{x_{1}, x_{6}\right\},\left\{x_{3}, x_{4}\right\}\right)$	0	1	0	0	0	0	0	1
\vdots				\vdots				\vdots

- $X=\left\{x_{1}, \ldots, x_{6}\right\}$ and v.
- $Y=\left\{y_{1}, \ldots, y_{7}\right\}$.
$\triangleright \operatorname{inc}_{(G, X)}^{4}(v)=\sum_{y \in Y} \operatorname{inc}_{(G, X)}^{4}(y)$ over \mathbb{F}_{2}.

Running Example: Perfect Deletion (vc)

Concrete example

Vertex	$\left\{p, v_{1}\right\}$	$\left\{v_{1}, v_{2}\right\}$	$\left\{v_{2}, v_{3}\right\}$	$\left\{v_{3}, v_{4}\right\}$	$\left\{v_{4}, q\right\}$	\ldots
y_{1}	1	1	1	1	1	
y_{2}	1	0	0	0	1	
y_{3}	0	0	0	0	1	
y_{4}	1	0	0	0	0	\ldots
y_{5}	0	0	0	1	1	
y_{6}	0	0	1	0	0	
y_{7}	1	1	0	0	0	
v	0	0	0	0	0	\cdots

- $X=\left\{x_{1}, \ldots, x_{6}\right\}$ and v.
- $Y=\left\{y_{1}, \ldots, y_{7}\right\}$.
$-\operatorname{inc}_{(G, X)}^{4}(v)=\sum_{y \in Y} \operatorname{inc}_{(G, X)}^{4}(y)$ over \mathbb{F}_{2}.
- y_{2} sees 2 edges of X.

Running Example: Perfect Deletion (vc)

Concrete example

	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}	y_{7}	v
$\left(\left\{x_{5}\right\}, \emptyset\right)$	1	1	1	0	1	0	0	0
$\left(\left\{x_{1}, x_{2}\right\}, \emptyset\right)$	1	1	0	1	0	0	1	0
$\left(\left\{x_{2}, x_{3}\right\}, \emptyset\right)$	1	0	0	0	0	0	1	0
$\left(\left\{x_{3}, x_{4}\right\}, \emptyset\right)$	1	0	0	0	0	1	0	0
$\left(\left\{x_{1}, x_{6}\right\},\left\{x_{3}, x_{4}\right\}\right)$	0	1	0	0	0	0	0	1
\vdots				\vdots				\vdots

- $X=\left\{x_{1}, \ldots, x_{6}\right\}$ and v.
- $Y=\left\{y_{1}, \ldots, y_{7}\right\}$.
$-\operatorname{inc}_{(G, X)}^{4}(v)=\sum_{y \in Y} \operatorname{inc}_{(G, X)}^{4}(y)$ over \mathbb{F}_{2}.
- y_{2} sees 2 edges of X.
- $G\left[\left\{x_{2}, x_{3}, x_{4}, x_{5}, y_{2}\right\}\right]$ induces odd hole.

Running Example: Perfect Deletion (vc)

Odd anti-holes can be dealt with in a similar fashion.

Running Example: Perfect Deletion (vc)

Odd anti-holes can be dealt with in a similar fashion.
Theorem
Perfect Deletion (vc) admits a kernel with $\mathcal{O}\left(|X|^{5}\right)$ vertices.

Running Example: Perfect Deletion (vc)

Odd anti-holes can be dealt with in a similar fashion.
Theorem
Perfect Deletion (vc) admits a kernel with $\mathcal{O}\left(|X|^{5}\right)$ vertices.

For which Π does Π-free Deletion (vc) admit polynomial kernel?

Running Example: Perfect Deletion (vc)

Odd anti-holes can be dealt with in a similar fashion.
Theorem
Perfect Deletion (vc) admits a kernel with $\mathcal{O}\left(|X|^{5}\right)$ vertices.

For which Π does Π-free Deletion (vc) admit polynomial kernel?

We can generalize this incidence vector approach.

Meta-theorem

Definition (rank-c adjacencies)
Let $c \in \mathbb{N}$. Graph property Π is characterized by rank- c adjacencies if the following holds:

For each graph H, for each vertex cover X of H, for each set $D \subseteq V(H) \backslash X$, for each $v \in V(H) \backslash(D \cup X)$, if

- $H-D \in \Pi$, and
- $\operatorname{inc}_{(H, X)}^{c}(v)=\sum_{u \in D} \operatorname{inc}_{(H, X)}^{c}(u)$ when evaluated over \mathbb{F}_{2}, then there exists $D^{\prime} \subseteq D$ such that $H-v-\left(D \backslash D^{\prime}\right) \in \Pi$.

Meta-theorem

Theorem [Fomin et al. 2014]

If Π is a graph property such that:
(i) Π is characterized by c adjacencies,
(ii) every graph in Π contains at least one edge, and
(iii) there is a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ such that all graphs G that are vertex-minimal with respect to Π satisfy

$$
|V(G)| \leq p(\operatorname{vC}(G))
$$

then ח-free Deletion parameterized by the vertex cover size x admits a polynomial kernel with $\mathcal{O}\left((x+p(x)) x^{c}\right)$ vertices.

Meta-theorem

Theorem [Jansen \& de Kroon]

If Π is a graph property such that:
(i) Π is characterized by rank-c adjacencies,
(ii) every graph in Π contains at least one edge, and
(iii) there is a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ such that all graphs G that are vertex-minimal with respect to Π satisfy

$$
|V(G)| \leq p(\operatorname{VC}(G))
$$

then ח-free Deletion parameterized by the vertex cover size x admits a polynomial kernel with $\mathcal{O}\left((x+p(x)) x^{c}\right)$ vertices.

Meta-theorem

Fomin et al. [2014]

$\Pi:=$ all graphs that...	c ?	Π-free deletion kernel
contain C_{n} for some $n \geq \ell$	$\ell-1$	$\mathcal{O}\left(\|X\|^{\ell}\right)$ vrtcs
contain an odd cycle	2	$\mathcal{O}\left(\|X\|^{3}\right)$ vrtcs
\ldots	\ldots	\ldots

Meta-theorem

Fomin et al. [2014]

$\Pi:=$ all graphs that...	c ?	Π-free deletion kernel
contain C_{n} for some $n \geq \ell$	$\ell-1$	$\mathcal{O}\left(\|X\|^{\ell}\right)$ vrtcs
contain an odd cycle	2	$\mathcal{O}\left(\|X\|^{3}\right)$ vrtcs
\ldots	\ldots	\ldots

Our results

$\Pi:=$ all graphs that...	rank- c ?	Π-free deletion kernel
are not perfect	4	$\mathcal{O}\left(\|X\|^{5}\right)$ vrtcs
contain even holes	3	$\mathcal{O}\left(\|X\|^{4}\right)$ vrtcs
contain asteroidal triples	8	$\mathcal{O}\left(\|X\|^{9}\right)$ vrtcs
are not interval	8	$\mathcal{O}\left(\|X\|^{9}\right)$ vrtcs
contain a wheel	4	$\mathcal{O}\left(\|X\|^{5}\right)$ vrtcs

Meta-theorem

We gave a weaker sufficient condition for polynomial kernelization of ח-free Deletion (vc).

Meta-theorem

We gave a weaker sufficient condition for polynomial kernelization of ח-Free Deletion (vC). Is it tight?

Meta-theorem

We gave a weaker sufficient condition for polynomial kernelization of П-free Deletion (vC). Is it tight?

Wheel
A wheel W_{n} for some $n \geq 3$ consists of an induced cycle C_{n} with an apex vertex.

Meta-theorem

We gave a weaker sufficient condition for polynomial kernelization of П-free Deletion (vC). Is it tight?

Wheel
A wheel W_{n} for some $n \geq 3$ consists of an induced cycle C_{n} with an apex vertex.

$\Pi:=$ all graphs that...	rank- c ?	Π-free deletion kernel
contain a wheel	4	$\mathcal{O}\left(\|X\|^{5}\right)$ vrtcs

Meta-theorem

We gave a weaker sufficient condition for polynomial kernelization of ח-Free Deletion (vC). Is it tight?

Wheel
A wheel W_{n} for some $n \geq 3$ consists of an induced cycle C_{n} with an apex vertex.

$\Pi:=$ all graphs that...	rank- c ?	Π-free deletion kernel
contain a wheel	4	$\mathcal{O}\left(\|X\|^{5}\right)$ vrtcs
contain a wheel besides W_{4}	no $c \in \mathbb{N}$	no poly $(\mathrm{NP} \nsubseteq \operatorname{coNP} /$ poly $)$

Meta-theorem

$\Pi:=$ all graphs that...	rank- c ?	Π-free deletion kernel
are not perfect	4	$\mathcal{O}\left(\|X\|^{5}\right)$ vrtcs
contain even holes	3	$\mathcal{O}\left(\|X\|^{4}\right)$ vrtcs
contain asteroidal triples	8	$\mathcal{O}\left(\|X\|^{9}\right)$ vrtcs
are not interval	8	$\mathcal{O}\left(\|X\|^{9}\right)$ vrtcs
contain a wheel	4	$\mathcal{O}\left(\|X\|^{5}\right)$ vrtcs
contain a wheel besides W_{4}	no $c \in \mathbb{N}$	no poly $(\mathrm{NP} \nsubseteq$ coNP/poly $)$

Meta-theorem

$\Pi:=$ all graphs that...	rank-c?	Π-free deletion kernel
are not perfect	4	$\mathcal{O}\left(\|X\|^{5}\right)$ vrtcs
contain even holes	3	$\mathcal{O}\left(\|X\|^{4}\right)$ vrtcs
contain asteroidal triples	8	$\mathcal{O}\left(\|X\|^{9}\right)$ vrtcs
are not interval	8	$\mathcal{O}\left(\|X\|^{9}\right)$ vrtcs
contain a wheel	4	$\mathcal{O}\left(\|X\|^{5}\right)$ vrtcs
contain a wheel besides W_{4}	no $c \in \mathbb{N}$	no poly $(\mathrm{NP} \nsubseteq$ coNP/poly $)$

Open problems:

- Is the meta-theorem tight now?

Meta-theorem

$\Pi:=$ all graphs that...	rank-c?	Π-free deletion kernel
are not perfect	4	$\mathcal{O}\left(\|X\|^{5}\right)$ vrtcs
contain even holes	3	$\mathcal{O}\left(\|X\|^{4}\right)$ vrtcs
contain asteroidal triples	8	$\mathcal{O}\left(\|X\|^{9}\right)$ vrtcs
are not interval	8	$\mathcal{O}\left(\|X\|^{9}\right)$ vrtcs
contain a wheel	4	$\mathcal{O}\left(\|X\|^{5}\right)$ vrtcs
contain a wheel besides W_{4}	no $c \in \mathbb{N}$	no poly $(\mathrm{NP} \nsubseteq$ coNP/poly $)$

Open problems:

- Is the meta-theorem tight now?
- Can the meta-theorem be used for Permutation Deletion or Comparability Deletion?

