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Vertex-Deletion Problem

Π-free Deletion
Input: A graph G and an integer k.
Question: Does there exist a set S ⊆ V (G) of size at most k
such that G− S does not contain any graph from Π as induced
subgraph?

Often stated as F-Deletion.

Example

{K2}-free Deletion ≡ Vertex Cover ≡
{edgeless graphs}-Deletion

NP-hard - Lewis and Yannakakis [1980].

Question
Can we efficiently reduce the size of the input graph without
changing the answer?
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Parameterized complexity

Analyze problems in terms of input size and in terms of an
additional parameter.

Kernelization
Efficiently reduce an instance (G, k) to an equivalent instance
(G′, k′) of size bounded by some f(k).

G k
G′ k′

poly(|G|, k) time

If f(k) is polynomial function, (G′, k′) is polynomial kernel.
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Running Example: Perfect Deletion

Perfect graph

I Chromatic number of every induced subgraph equals its
largest clique size.

I Equivalent to Berge graphs - Chudnovsky et al. [2006].

I Graph without induced cycle (hole) of odd length at least 5 or
its edge complement.
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Running Example: Perfect Deletion

Perfect Deletion
I W[2]-hard by solution size - Heggernes et al. [2013].

I Try larger parameter, vertex cover size.

Does Perfect Deletion (vc) admit a polynomial kernel?

For which Π does Π-free Deletion (vc) admit polynomial
kernel?

I Sufficient condition by Fomin et al. [2014].
I Not satisfied by:

I Perfect Deletion (vc)
I Interval Deletion (vc)

I Polynomial kernel for Interval Deletion (k) - Agrawal et
al. [2019].
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Running Example: Perfect Deletion (vc)

Perfect Deletion (vc) Parameter: |X|
Input: A graph G, a vertex cover X of G, and an integer k.
Question: Does there exist a set S ⊆ V (G) of size at most k
such that G− S does not contain an odd (anti-)hole as induced
subgraph?

X

A

Reduce instance (G,X, k) to equivalent instance (G[X ∪A], X, k),
s.t. |A| ≤ p(|X|).

I G− S perfect ⇒ G[X ∪A]− S perfect.

I Challenge: Pick A so that other direction holds.
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Incidence vectors

Intuition: set A should represent independent set V (G) \X.

X

v

x1

x2

x3

x4 inc2(G,X)(v) =


({x1}, ∅) : 1

({x1, x2}, ∅) : 0
({x1}, {x2}) : 1

...
...



Basic incidence vector
For xi ∈ X,

inc(G,X)(v)[xi] = 1 iff xi ∈ N(v).

More general (rank-c incidence vector)

For disjoint P,Q ⊆ X s.t. |P |+ |Q| ≤ c,

incc(G,X)(v)[(P,Q)] = 1 iff P ⊆ N(v) and Q ∩N(v) = ∅.
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Running example: Perfect Deletion (vc)
Marking set A.

For any induced cycle C in G with vertex cover X: |C| ≤ 2|X|.

Marking Scheme

I Compute multiset of vectors inc4(G,X)(u) for u ∈ V (G) \X.

I Repeat k + 2|X|+ 1 times:
I Compute basis of multiset over F2.
I Mark a unique vertex corresponding to each vector in basis.
I Remove basis from multiset (multiset subtraction).

I Remove all unmarked vertices.

Claim
Resulting graph has O(|X|+ (k + 2|X|+ 1) · |X|4) = O(|X|5)
vertices.
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Running Example: Perfect Deletion (vc)

Lemma
Let P = {v1, ..., vn} be a path on n vertices where n ≥ 4 is even,
let y be a vertex not on P such that it is adjacent to both
endpoints of P . If y and sees an even number of edges of P , then
the graph contains an odd hole.

v1 v2

y

vnvjv3 v4 vn−1
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I y sees no other vertex → odd hole (C5).

I y sees v2 (and v3) → 1 edge (3 edges) seen.
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Running Example: Perfect Deletion (vc)
G[X ∪A]− S perfect ⇒ G− S perfect

X

V (G) \X

X

V (G) \X
A1 A2 A3 A4 Ak+|2|X|+1

. . .

v

C

P = C − v

u

C ′
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I Compute disjoint bases Ai for i ∈ [k + 2|X|+ 1], A =
⋃

iAi.
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I Consider solution S (red) s.t. G[X ∪A]− S perfect.
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I Let C be an odd hole s.t. |V (C) \ (X ∪A)| minimum.

I |C|+ |S| ≤ 2|X|+ k, there exists Ai outside S ∪C (e.g. A2).
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I Claim: some u ∈ Ai sees even number of edges of P = C − v.

I By lemma, there exists odd hole C ′ that contradicts
minimality of C.

I Hence G− S does not contain odd hole.
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Running Example: Perfect Deletion (vc)
Concrete example

x1

x2

x3

x4

x5

x6

v

x1

x2

x3

x4

x5

x6

y3

y4

y5

y6

y7

yi

yi

v y1 y2

y1 y2 y3 y4 y5 y6 y7 v
({x5}, ∅) 1 1 1 0 1 0 0 0

({x1, x2}, ∅) 1 1 0 1 0 0 1 0
({x2, x3}, ∅) 1 0 0 0 0 0 1 0
({x3, x4}, ∅) 1 0 0 0 0 1 0 0

({x1, x6}, {x3, x4}) 0 1 0 0 0 0 0 1
...

...
...

I X = {x1, ..., x6} and v.

I Y = {y1, ..., y7}.
I inc4(G,X)(v) =

∑
y∈Y inc4(G,X)(y) over F2.

I y2 sees 2 edges of X.

I G[{x2, x3, x4, x5, y2}] induces odd hole.
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Running Example: Perfect Deletion (vc)

Odd anti-holes can be dealt with in a similar fashion.

Theorem
Perfect Deletion (vc) admits a kernel with O(|X|5) vertices.

For which Π does Π-free Deletion (vc) admit polynomial
kernel?

We can generalize this incidence vector approach.
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Meta-theorem

Definition (rank-c adjacencies)

Let c ∈ N. Graph property Π is characterized by rank-c adjacencies
if the following holds:

For each graph H, for each vertex cover X of H, for each set
D ⊆ V (H) \X, for each v ∈ V (H) \ (D ∪X), if

I H −D ∈ Π, and

I incc(H,X)(v) =
∑

u∈D incc(H,X)(u) when evaluated over F2,

then there exists D′ ⊆ D such that H − v − (D \D′) ∈ Π.
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Meta-theorem

Theorem [Fomin et al. 2014]

If Π is a graph property such that:

(i) Π is characterized by c adjacencies,

(ii) every graph in Π contains at least one edge, and

(iii) there is a polynomial p : N→ N such that all graphs G that
are vertex-minimal with respect to Π satisfy
|V (G)| ≤ p(vc(G)),

then Π-free Deletion parameterized by the vertex cover size x
admits a polynomial kernel with O((x + p(x))xc) vertices.
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Meta-theorem

Theorem [Jansen & de Kroon]

If Π is a graph property such that:

(i) Π is characterized by rank-c adjacencies,

(ii) every graph in Π contains at least one edge, and

(iii) there is a polynomial p : N→ N such that all graphs G that
are vertex-minimal with respect to Π satisfy
|V (G)| ≤ p(vc(G)),

then Π-free Deletion parameterized by the vertex cover size x
admits a polynomial kernel with O((x + p(x))xc) vertices.
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Meta-theorem

Fomin et al. [2014]

Π := all graphs that... c? Π-free deletion kernel

contain Cn for some n ≥ ` `− 1 O(|X|`) vrtcs

contain an odd cycle 2 O(|X|3) vrtcs

. . . . . . . . .

Our results

Π := all graphs that... rank-c? Π-free deletion kernel

are not perfect 4 O(|X|5) vrtcs

contain even holes 3 O(|X|4) vrtcs

contain asteroidal triples 8 O(|X|9) vrtcs

are not interval 8 O(|X|9) vrtcs

contain a wheel 4 O(|X|5) vrtcs
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Meta-theorem

We gave a weaker sufficient condition for polynomial kernelization
of Π-free Deletion (vc).

Is it tight?

Wheel
A wheel Wn for some n ≥ 3 consists of an induced cycle Cn with
an apex vertex.

Π := all graphs that... rank-c? Π-free deletion kernel

contain a wheel 4 O(|X|5) vrtcs

contain a wheel besides W4 no c ∈ N no poly (NP 6⊆ coNP/poly)

17 / 18



Meta-theorem

We gave a weaker sufficient condition for polynomial kernelization
of Π-free Deletion (vc). Is it tight?

Wheel
A wheel Wn for some n ≥ 3 consists of an induced cycle Cn with
an apex vertex.

Π := all graphs that... rank-c? Π-free deletion kernel

contain a wheel 4 O(|X|5) vrtcs

contain a wheel besides W4 no c ∈ N no poly (NP 6⊆ coNP/poly)

17 / 18



Meta-theorem

We gave a weaker sufficient condition for polynomial kernelization
of Π-free Deletion (vc). Is it tight?

Wheel
A wheel Wn for some n ≥ 3 consists of an induced cycle Cn with
an apex vertex.

Π := all graphs that... rank-c? Π-free deletion kernel

contain a wheel 4 O(|X|5) vrtcs

contain a wheel besides W4 no c ∈ N no poly (NP 6⊆ coNP/poly)

17 / 18



Meta-theorem

We gave a weaker sufficient condition for polynomial kernelization
of Π-free Deletion (vc). Is it tight?

Wheel
A wheel Wn for some n ≥ 3 consists of an induced cycle Cn with
an apex vertex.

Π := all graphs that... rank-c? Π-free deletion kernel

contain a wheel 4 O(|X|5) vrtcs

contain a wheel besides W4 no c ∈ N no poly (NP 6⊆ coNP/poly)

17 / 18



Meta-theorem

We gave a weaker sufficient condition for polynomial kernelization
of Π-free Deletion (vc). Is it tight?

Wheel
A wheel Wn for some n ≥ 3 consists of an induced cycle Cn with
an apex vertex.

Π := all graphs that... rank-c? Π-free deletion kernel

contain a wheel 4 O(|X|5) vrtcs

contain a wheel besides W4 no c ∈ N no poly (NP 6⊆ coNP/poly)

17 / 18



Meta-theorem
Π := all graphs that... rank-c? Π-free deletion kernel

are not perfect 4 O(|X|5) vrtcs

contain even holes 3 O(|X|4) vrtcs

contain asteroidal triples 8 O(|X|9) vrtcs

are not interval 8 O(|X|9) vrtcs

contain a wheel 4 O(|X|5) vrtcs

contain a wheel besides W4 no c ∈ N no poly (NP 6⊆ coNP/poly)

18 / 18



Meta-theorem
Π := all graphs that... rank-c? Π-free deletion kernel

are not perfect 4 O(|X|5) vrtcs

contain even holes 3 O(|X|4) vrtcs

contain asteroidal triples 8 O(|X|9) vrtcs

are not interval 8 O(|X|9) vrtcs

contain a wheel 4 O(|X|5) vrtcs

contain a wheel besides W4 no c ∈ N no poly (NP 6⊆ coNP/poly)

Open problems:

I Is the meta-theorem tight now?

18 / 18



Meta-theorem
Π := all graphs that... rank-c? Π-free deletion kernel

are not perfect 4 O(|X|5) vrtcs

contain even holes 3 O(|X|4) vrtcs

contain asteroidal triples 8 O(|X|9) vrtcs

are not interval 8 O(|X|9) vrtcs

contain a wheel 4 O(|X|5) vrtcs

contain a wheel besides W4 no c ∈ N no poly (NP 6⊆ coNP/poly)

Open problems:

I Is the meta-theorem tight now?

I Can the meta-theorem be used for Permutation Deletion
or Comparability Deletion?
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