Preprocessing Vertex-Deletion Problems: Characterizing Graph Properties by Low-Rank Adjacencies

Jari J.H. de Kroon Bart M.P. Jansen

Eindhoven University of Technology

Workshop on Graph Modification, January 2020

-free Deletion

Input: A graph G and an integer k.

Question: Does there exist a set S V(G) of size at most k such that G S does not contain any graph from as induced

subgraph?

-free Deletion

Input: A graph G and an integer k.

Question: Does there exist a set S V(G) of size at most k such that G S does not contain any graph from as induced subgraph?

Often stated as F-Deletion.

-free Deletion

Input: A graph G and an integer k.

Question: Does there exist a set S V(G) of size at most k such that G S does not contain any graph from as induced subgraph?

Often stated as *F*-Deletion.

Example

 fK_2g -free Deletion Vertex Cover fedgeless graphsg-Deletion

-free Deletion

Input: A graph G and an integer k.

Question: Does there exist a set S V(G) of size at most k such that G S does not contain any graph from as induced subgraph?

Often stated as F-Deletion.

Example

 fK_2g -free Deletion Vertex Cover fedgeless graphsg-Deletion

NP-hard - Lewis and Yannakakis [1980].

-free Deletion

Input: A graph G and an integer k.

Question: Does there exist a set S V(G) of size at most k such that G S does not contain any graph from as induced subgraph?

Often stated as F-Deletion.

Example

 fK_2g -free Deletion Vertex Cover fedgeless graphs g-Deletion

NP-hard - Lewis and Yannakakis [1980].

Question

Can we efficiently reduce the size of the input graph without changing the answer?

Parameterized complexity

Analyze problems in terms of input size *and* in terms of an additional parameter.

Parameterized complexity

Analyze problems in terms of input size *and* in terms of an additional parameter.

Kernelization

Efficiently reduce an instance (G; k) to an equivalent instance $(G^{\emptyset}; k^{\emptyset})$ of size bounded by some f(k).

Parameterized complexity

Analyze problems in terms of input size *and* in terms of an additional parameter.

Kernelization

Efficiently reduce an instance (G; k) to an equivalent instance $(G^{\emptyset}; k^{\emptyset})$ of size bounded by some f(k).

If f(k) is polynomial function, $(G^{\emptyset}; k^{\emptyset})$ is polynomial kernel.

Perfect graph

Chromatic number of every induced subgraph equals its largest clique size.

Perfect graph

- Chromatic number of every induced subgraph equals its largest clique size.
- Equivalent to Berge graphs Chudnovsky et al. [2006].

Perfect graph

- Chromatic number of every induced subgraph equals its largest clique size.
- Equivalent to Berge graphs Chudnovsky et al. [2006].
- Graph without induced cycle (hole) of odd length at least 5 or its edge complement.

Perfect Deletion

W[2]-hard by solution size - Heggernes et al. [2013].

Perfect Deletion

- W[2]-hard by solution size Heggernes et al. [2013].
- Try larger parameter, vertex cover size.

Perfect Deletion

- W[2]-hard by solution size Heggernes et al. [2013].
- Try larger parameter, vertex cover size.

Does Perfect Del etion (vc) admit a polynomial kernel?

Perfect Deletion

- W[2]-hard by solution size Heggernes et al. [2013].
- Try larger parameter, vertex cover size.

Does Perfect Deletion (vc) admit a polynomial kernel?

For which does -free Deletion (vc) admit polynomial kernel?

Perfect Deletion

- W[2]-hard by solution size Heggernes et al. [2013].
- Try larger parameter, vertex cover size.

Does Perfect Deletion (vc) admit a polynomial kernel?

For which does -free Deletion (vc) admit polynomial kernel?

Sufficient condition by Fomin et al. [2014].

Perfect Deletion

- W[2]-hard by solution size Heggernes et al. [2013].
- Try larger parameter, vertex cover size.

Does Perfect Deletion (vc) admit a polynomial kernel?

For which does -free Deletion (vc) admit polynomial kernel?

- Sufficient condition by Fomin et al. [2014].
- Not satisfied by:
 - Perfect Deletion (vc)
 - Interval Deletion (vc)

Perfect Deletion

- W[2]-hard by solution size Heggernes et al. [2013].
- I Try larger parameter, vertex cover size.

DoesPerfect Deletion (vc) admit a polynomial kernel?

For which does -free Deletion (vc) admit polynomial kernel?

- Su cient condition by Fomin et al. [2014].
- Not satis ed by:
 - Perfect Deletion (vc)
 - Interval Deletion (vc)
- Polynomial kernel forInterval Deletion (k) Agrawal et al. [2019].

Perfect Deletion (vc)

Input: A graph G, a vertex coverX of G, and an integerk.

Question: Does there exist a set V(G) of size at mostk such that G S does not contain an odd (anti-)hole as induced subgraph?

Perfect Deletion (vc) Parameter: jX j Input: A graph G, a vertex coverX of G, and an integerk. Question: Does there exist a set V(G) of size at mostk such that G S does not contain an odd (anti-)hole as induced subgraph?

Perfect Deletion (vc) Parameter: jX j Input: A graph G, a vertex coveiX of G, and an integerk. Question: Does there exist a set V(G) of size at mostk such that G S does not contain an odd (anti-)hole as induced subgraph?

Reduce instanc(G; X; k) to equivalent instanc(G[X [A]; X; k), s.t. jAj = p(jXj).

Perfect Deletion (vc)

Input: A graph G, a vertex coveiX of G, and an integerk.

Question: Does there exist a set V(G) of size at mostk such that G S does not contain an odd (anti-)hole as induced subgraph?

```
Reduce instanc\notinG; X; k) to equivalent instanc\notinG[X [ A]; X; k), s.t. jAj p(jX j).
```

G S perfect) G[X [A] S perfect.

Perfect Deletion (vc) Parameter: jX j Input: A graph G, a vertex coveiX of G, and an integerk. Question: Does there exist a set V(G) of size at mostk such that G S does not contain an odd (anti-)hole as induced subgraph?

Reduce instanc(G; X; k) to equivalent instanc(G[X [A]; X; k), s.t. jAj = p(jXj).

- G S perfect) G[X [A] S perfect.
- Challenge: PickA so that other direction holds.

Intuition: set A should represent independent set(G) n X.

Intuition: set A should represent independent state(G) n X.

Intuition: set A should represent independent set(G) n X.

Basic incidence vector

For $x_i 2 X$,

 $inc_{(G;X)}(v)[x_i] = 1 i x_i 2 N(v).$

Intuition: set A should represent independent set(G) n X.

Basic incidence vector For $x_i \ 2 \ X$, $inc_{(G;X)}(v)[x_i] = 1 \ i \quad x_i \ 2 \ N(v).$ More general (ranke-incidence vector) For disjoint $P; Q \ X \ s.t. \ jPj + jQj \ c$, $inc_{(G:X)}^c(v)[(P;Q)] = 1 \ i \ P \ N(v) \ and \ Q \setminus N(v) = \ ; .$

Marking set A.

For any induced cycle in G with vertex coverX: jCj 2jXj.

Marking set A.

For any induced cycl€ in G with vertex coverX : jCj 2jX j.

Marking Scheme

Compute multiset of vector $snc_{(G:X)}^4(u)$ for u 2 V(G) n X.

Marking set A.

For any induced cycle in G with vertex coverX: jCj 2jXj.

- Compute multiset of vector $snc^4_{(G:X)}(u)$ for u 2 V(G) n X.
- Repeatk +2jXj+1 times:

Marking set A.

For any induced cycle in G with vertex coverX: jCj 2jXj.

- Compute multiset of vector $sinc^4_{(G;X)}(u)$ for u 2 V(G) n X.
- Repeatk +2jXj+1 times:
 - Compute basis of multiset over 2.

Marking set A.

For any induced cycl€ in G with vertex coverX : jCj 2jX j.

- Compute multiset of vector $snc_{(G:X)}^4(u)$ for u 2 V(G) n X.
- Repeatk + 2jXj + 1 times:
 - Compute basis of multiset over 2.
 - Mark a unique vertex corresponding to each vector in basis.

Marking set A.

For any induced cycl€ in G with vertex coverX : jCj 2jX j.

- Compute multiset of vector $snc_{(G:X)}^4(u)$ for u 2 V(G) n X.
- Repeatk + 2jXj + 1 times:
 - Compute basis of multiset over 2.
 - Mark a unique vertex corresponding to each vector in basis.
 - Remove basis from multiset (multiset subtraction).

Marking set A.

For any induced cycl€ in G with vertex coverX : jCj 2jX j.

- Compute multiset of vector $snc_{(G;X)}^4(u)$ for $u \ge V(G) n X$.
- Repeatk + 2jXj + 1 times:
 - Compute basis of multiset over 2.
 - Mark a unique vertex corresponding to each vector in basis.
 - Remove basis from multiset (multiset subtraction).
- Remove all unmarked vertices.

Marking set A.

For any induced cycl€ in G with vertex coverX : jCj 2jX j.

Marking Scheme

- Compute multiset of vector $snc^4_{(G;X)}(u)$ for u 2 V(G) n X.
- Repeatk +2jXj+1 times:
 - Compute basis of multiset over 2.
 - Mark a unique vertex corresponding to each vector in basis.
 - Remove basis from multiset (multiset subtraction).
- Remove all unmarked vertices.

Claim

Resulting graph ha $\mathfrak{Q}(jXj + (k+2jXj+1) \quad jXj^4) = O(jXj^5)$ vertices.

Lemma

Let $P = f v_1; ...; v_n g$ be a path onn vertices wheren 4 is even, let y be a vertex not or P such that it is adjacent to both endpoints of P. If y and sees an even number of edges Pofthen the graph contains an odd hole.

Lemma

Let $P = f v_1; ...; v_n g$ be a path onn vertices wheren 4 is even, let y be a vertex not or P such that it is adjacent to both endpoints of P. If y and sees an even number of edges Pofthen the graph contains an odd hole.

Proof by induction om: base case

y sees no other vertek odd hole (C_5) .

Lemma

Let $P = f v_1; ...; v_n g$ be a path onn vertices wheren 4 is even, let y be a vertex not or P such that it is adjacent to both endpoints of P. If y and sees an even number of edges Pofthen the graph contains an odd hole.

Proof by induction om: base case

- y sees no other vertek odd hole C_5).
- y sees v_2 (and v_3)! 1 edge (3 edges) seen.

Lemma

Let $P = f v_1; ...; v_n g$ be a path onn vertices wheren 4 is even, let y be a vertex not or P such that it is adjacent to both endpoints of P. If y and sees an even number of edges Pofthen the graph contains an odd hole.

Proof by induction om: induction step

y sees no other vertek odd hole C_{n+1}).

Lemma

Let $P = f v_1; ...; v_n g$ be a path onn vertices wheren 4 is even, let y be a vertex not or P such that it is adjacent to both endpoints of P. If y and sees an even number of edges Pofthen the graph contains an odd hole.

Proof by induction om: induction step

- y sees no other vertek odd hole C_{n+1}).
- y sees rst and last edge IH on $P^0 = f v_2; ...; v_{n-1}g$.

Lemma

Let $P = f v_1; ...; v_n g$ be a path onn vertices wheren 4 is even, let y be a vertex not or P such that it is adjacent to both endpoints of P. If y and sees an even number of edges Pofthen the graph contains an odd hole.

Proof by induction om: induction step

Otherwise, ify does not see last edge, let n 1 be largest index s.t. y sees v_j .

Lemma

Let $P = f v_1; ...; v_n g$ be a path onn vertices wheren 4 is even, let y be a vertex not or P such that it is adjacent to both endpoints of P. If y and sees an even number of edges Pofthen the graph contains an odd hole.

Proof by induction om: induction step

Otherwise, ify does not see last edge, letk n 1 be largest index s.t. y seesv₁.

If j odd, then $f v_j$; :::; $v_n g[f yg odd hole$.

Lemma

Let $P = f v_1; ...; v_n g$ be a path onn vertices wheren 4 is even, let y be a vertex not or P such that it is adjacent to both endpoints of P. If y and sees an even number of edges Pofthen the graph contains an odd hole.

Proof by induction om: induction step

Otherwise, ify does not see last edge, let n 1 be largest index s.t. y seesv_j.

- If j odd, then $f(v_j; ...; v_n g[f])$ yg odd hole.
- If j even, then 62! IH on $P^0 = fv_1; ...; v_j g$.

G[X [A] S perfect) G S perfect

Compute disjoint base \mathbf{A}_i for i 2 [k + 2jX j + 1], A = $\begin{bmatrix} S \\ i \end{bmatrix}$ A_i.

- Compute disjoint base \mathbf{A}_i for i 2 [k + 2jXj + 1], A = $\begin{bmatrix} S \\ i \end{bmatrix}$
- Consider kernel grap&[X [A].

- Compute disjoint base \mathbf{A}_i for i 2 [k + 2jXj + 1], A = $\begin{bmatrix} S \\ i \end{bmatrix}$
- Consider kernel grap&[X [A].
- Consider solutiorS (red) s.t. G[X [A] S perfect.

G[X [A] S perfect) G S perfect

For contradiction, suppose S contains odd hole.

- For contradiction, suppos€ S contains odd hole.
- Let C be an odd hole s.tjV(C) n(X [A)j minimum.

- For contradiction, suppos€ S contains odd hole.
- Let C be an odd hole s.tjV(C) n(X [A)j minimum.
- $\int J(j+jS) = 2jXj + k$, there exists A_i outside $S[C(e.g. A_2)]$.

As v not marked,
$$\operatorname{inc}_{(G;X)}^4(v) = {\mathsf P}_{\mathsf{y2A_i}} \operatorname{inc}_{(G;X)}^4(\mathsf{y}) \operatorname{over} \mathsf{F}_2.$$

- As v not marked, $\operatorname{inc}_{(G;X)}^4(v) = \Pr_{y \ge A_i} \operatorname{inc}_{(G;X)}^4(y)$ over F_2 .
- Claim: someu 2 Ai sees even number of edgesRof= C v.

- As v not marked, $\inf_{G;X} (v) = P_{y2A_i} \inf_{G;X} (y)$ over F_2 .
- Claim: someu 2 A₁ sees even number of edgesPo⊨ C v.
- By lemma, there exists odd hole that contradicts minimality of C.

- As v not marked, $\operatorname{inc}_{(G;X)}^4(v) = {\mathsf{P}}_{y2A_i} \operatorname{inc}_{(G;X)}^4(y)$ over F_2 .
- l Claim: someu 2 A_i sees even number of edgesPof= C v.
- By lemma, there exists odd hole that contradicts minimality of C.
- HenceG S does not contain odd hole.

$$X = f x_1; ...; x_6 g and v.$$

```
X = fx_1; ...; x_6g \text{ and } v.

Y = fy_1; ...; y_7g.
```

```
 \begin{array}{ll} I & X = f \, x_1; ...; x_6 g \text{ and } v. \\ I & Y = f \, y_1; ...; y_7 g. \\ I & inc^4_{(G;X)}(v) = \displaystyle \int_{y_2 Y}^{y_2} inc^4_{(G;X)}(y) \text{ over } F_2. \end{array}
```

```
 \begin{array}{ll} X = f \, x_1; ...; x_6 g \text{ and } v. \\ Y = f \, y_1; ...; y_7 g. \\ I & inc_{(G;X)}^4(v) = \int\limits_{y_2 \, Y} inc_{(G;X)}^4(y) \text{ over } F_2. \\ I & y_2 \text{ sees } 2 \text{ edges } \text{ of } . \end{array}
```

```
 \begin{array}{ll} X = f x_1; :::; x_6 g \text{ and } v. \\ Y = f y_1; :::; y_7 g. \\ I & inc_{(G;X)}^4(v) = \sum_{y \geq Y} inc_{(G;X)}^4(y) \text{ over } F_2. \\ I & y_2 \text{ sees } 2 \text{ edges } \partial f. \\ I & G[f x_2; x_3; x_4; x_5; y_2 g] \text{ induces odd hole.} \end{array}
```

Odd anti-holes can be dealt with in a similar fashion.

Odd anti-holes can be dealt with in a similar fashion.

Theorem

Perfect Deletion (vc) admits a kernel with $O(jX_j^5)$ vertices.

Odd anti-holes can be dealt with in a similar fashion.

Theorem

Perfect Deletion (vc) admits a kernel with $O(/X/^5)$ vertices.

For which does -free Deletion (vc) admit polynomial kernel?

Odd anti-holes can be dealt with in a similar fashion.

Theorem

Perfect Deletion (vc) admits a kernel with $O(/X/^5)$ vertices.

For which does -free Deletion (vc) admit polynomial kernel?

We can generalize this incidence vector approach.

Definition (rank-c adjacencies)

Let $c \ge N$. Graph property is characterized by rank-c adjacencies if the following holds:

For each graph H, for each vertex cover X of H, for each set $D = V(H) \cap X$, for each $v \ge V(H) \cap (D \cap X)$, if

$$H$$
 $D2$, and

$$H D 2$$
, and $\operatorname{Inc}_{(H;X)}^{c}(v) = \operatorname{Inc}_{(H;X)}^{c}(u)$ when evaluated over F_2 ,

then there exists D^0 D such that H V $(D \cap D^0)$ 2.

Theorem [Fomin et al. 2014]

If is a graph property such that:

- (i) is characterized by c adjacencies,
- (ii) every graph in contains at least one edge, and
- (iii) there is a polynomial $p: \mathbb{N} / \mathbb{N}$ such that all graphs G that are vertex-minimal with respect to satisfy $\int V(G) \int p(\nabla C(G))$,

then -free Deletion parameterized by the vertex cover size X admits a polynomial kernel with $\mathcal{O}((X + p(X))X^{C})$ vertices.

Theorem [Jansen & de Kroon]

If is a graph property such that:

- (i) is characterized by rank-c adjacencies,
- (ii) every graph in contains at least one edge, and
- (iii) there is a polynomial $p: \mathbb{N} / \mathbb{N}$ such that all graphs G that are vertex-minimal with respect to satisfy $\int V(G) \int p(\nabla C(G))$,

then -free Deletion parameterized by the vertex cover size X admits a polynomial kernel with $\mathcal{O}((X + p(X))X^{C})$ vertices.

Fomin et al. [2014]

:= all graphs that	c?	-free deletion kernel
contain C_n for some n	` 1	O(jXj) vrtcs
contain an odd cycle	2	$O(jXj^3)$ vrtcs

Fomin et al. [2014]

:= all graphs that	c?	-free deletion kernel
contain C_n for some n	` 1	O(jXj) vrtcs
contain an odd cycle	2	$O(jXj^3)$ vrtcs

Our results

:= all graphs that	rank- <i>c</i> ?	-free deletion kernel
are not perfect	4	$O(jX_j^5)$ vrtcs
contain even holes	3	$O(jXj^4)$ vrtcs
contain asteroidal triples	8	$O(jX_j^9)$ vrtcs
are not interval	8	$O(jX_j^9)$ vrtcs
contain a wheel	4	$O(jX_j^5)$ vrtcs

We gave a weaker sufficient condition for polynomial kernelization of -free Deletion (vc).

We gave a weaker sufficient condition for polynomial kernelization of -free Deletion (vc). Is it tight?

We gave a weaker sufficient condition for polynomial kernelization of -free Deletion (vc). Is it tight?

Wheel

A wheel W_n for some n-3 consists of an induced cycle C_n with an apex vertex.

We gave a weaker sufficient condition for polynomial kernelization of -free Deletion (vc). Is it tight?

Wheel

A wheel W_n for some n-3 consists of an induced cycle C_n with an apex vertex.

:= all graphs that	rank-c?	-free deletion kernel
contain a wheel	4	$O(jX_j^5)$ vrtcs

We gave a weaker sufficient condition for polynomial kernelization of -free Deletion (vc). Is it tight?

Wheel

A wheel W_n for some n-3 consists of an induced cycle C_n with an apex vertex.

:= all graphs that	rank- <i>c</i> ?	-free deletion kernel
contain a wheel	4	$O(jX_j^5)$ vrtcs
contain a wheel besides W_4	no <i>c 2</i> N	no poly (NP 6 coNP/poly)

:= all graphs that	rank- <i>c</i> ?	-free deletion kernel
are not perfect	4	$O(jX_j^5)$ vrtcs
contain even holes	3	$O(jXj^4)$ vrtcs
contain asteroidal triples	8	$O(jX_j^9)$ vrtcs
are not interval	8	$O(jX_j^9)$ vrtcs
contain a wheel	4	$O(jX_j^5)$ vrtcs
contain a wheel besides W_4	no <i>c 2</i> N	no poly (NP 6 coNP/poly)

:= all graphs that	rank- <i>c</i> ?	-free deletion kernel
are not perfect	4	$O(jX_j^5)$ vrtcs
contain even holes	3	$O(jXj^4)$ vrtcs
contain asteroidal triples	8	$O(jXj^9)$ vrtcs
are not interval	8	$O(jXj^9)$ vrtcs
contain a wheel	4	$O(jX_j^5)$ vrtcs
contain a wheel besides W_4	no <i>c 2</i> N	no poly (NP 6 coNP/poly)

Open problems:

Is the meta-theorem tight now?

:= all graphs that	rank-c?	-free deletion kernel
are not perfect	4	$O(jX_j^5)$ vrtcs
contain even holes	3	$O(jXj^4)$ vrtcs
contain asteroidal triples	8	$O(jXj^9)$ vrtcs
are not interval	8	$O(jXj^9)$ vrtcs
contain a wheel	4	$O(jX_j^5)$ vrtcs
contain a wheel besides W_4	no <i>c 2</i> N	no poly (NP 6 coNP/poly)

Open problems:

- Is the meta-theorem tight now?
- Can the meta-theorem be used for Permutation Deletion or Comparability Deletion?